任务独立和依赖训练:HMM和混合HMM/MLP方法的性能比较

Jean-Marc Boite, H. Bourlard, B. D'hoore, S. Accaino, Johan Vantieghem
{"title":"任务独立和依赖训练:HMM和混合HMM/MLP方法的性能比较","authors":"Jean-Marc Boite, H. Bourlard, B. D'hoore, S. Accaino, Johan Vantieghem","doi":"10.1109/ICASSP.1994.389218","DOIUrl":null,"url":null,"abstract":"Compares speaker independent isolated word recognition performance obtained with standard phonemic hidden Markov models (HMMs) and hybrid approaches using a multilayer perceptron (MLP) to estimate the HMM emission probabilities. This latter approach has previously been shown particularly effective on a large vocabulary, speaker independent, continuous speech recognition task (i.e., ARPA Resource Management) by using simple context-independent phoneme models and single pronunciation word models. As a consequence, the main goal of the paper is to compare the performance which can be achieved by the different approaches for both task dependent and independent training.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Task independent and dependent training: performance comparison of HMM and hybrid HMM/MLP approaches\",\"authors\":\"Jean-Marc Boite, H. Bourlard, B. D'hoore, S. Accaino, Johan Vantieghem\",\"doi\":\"10.1109/ICASSP.1994.389218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compares speaker independent isolated word recognition performance obtained with standard phonemic hidden Markov models (HMMs) and hybrid approaches using a multilayer perceptron (MLP) to estimate the HMM emission probabilities. This latter approach has previously been shown particularly effective on a large vocabulary, speaker independent, continuous speech recognition task (i.e., ARPA Resource Management) by using simple context-independent phoneme models and single pronunciation word models. As a consequence, the main goal of the paper is to compare the performance which can be achieved by the different approaches for both task dependent and independent training.<<ETX>>\",\"PeriodicalId\":290798,\"journal\":{\"name\":\"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1994.389218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

比较了标准音位隐马尔可夫模型(HMM)和使用多层感知器(MLP)估计HMM发射概率的混合方法获得的独立于说话人的孤立词识别性能。通过使用简单的上下文无关的音素模型和单一发音单词模型,后一种方法在大词汇量、独立于说话者的连续语音识别任务(即ARPA资源管理)中被证明特别有效。因此,本文的主要目标是比较任务依赖训练和独立训练的不同方法所能达到的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Task independent and dependent training: performance comparison of HMM and hybrid HMM/MLP approaches
Compares speaker independent isolated word recognition performance obtained with standard phonemic hidden Markov models (HMMs) and hybrid approaches using a multilayer perceptron (MLP) to estimate the HMM emission probabilities. This latter approach has previously been shown particularly effective on a large vocabulary, speaker independent, continuous speech recognition task (i.e., ARPA Resource Management) by using simple context-independent phoneme models and single pronunciation word models. As a consequence, the main goal of the paper is to compare the performance which can be achieved by the different approaches for both task dependent and independent training.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信