容错多层神经网络的部分权值最小化方法

T. Haruhiko, K. Hidehiko, H. Terumine
{"title":"容错多层神经网络的部分权值最小化方法","authors":"T. Haruhiko, K. Hidehiko, H. Terumine","doi":"10.1109/IJCNN.2002.1007646","DOIUrl":null,"url":null,"abstract":"We propose a new learning algorithm to enhance fault tolerance of multilayer neural networks (MLNs). This method is based on the fact that strong weights make MLNs sensitive to faults. To decrease the number of strong connections, we introduce a new evaluation function for the new learning algorithm. The function consists of two terms: one is the output error and the other is the square sum of HO-weights (weighs between the hidden layer and output layer). The second term aims to decrease the value of HO-weights. By decreasing the value of only HO-weights, we enhance the fault tolerance against the previous method.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"50 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Partially weight minimization approach for fault tolerant multilayer neural networks\",\"authors\":\"T. Haruhiko, K. Hidehiko, H. Terumine\",\"doi\":\"10.1109/IJCNN.2002.1007646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new learning algorithm to enhance fault tolerance of multilayer neural networks (MLNs). This method is based on the fact that strong weights make MLNs sensitive to faults. To decrease the number of strong connections, we introduce a new evaluation function for the new learning algorithm. The function consists of two terms: one is the output error and the other is the square sum of HO-weights (weighs between the hidden layer and output layer). The second term aims to decrease the value of HO-weights. By decreasing the value of only HO-weights, we enhance the fault tolerance against the previous method.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"50 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1007646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

为了提高多层神经网络的容错性,提出了一种新的学习算法。该方法是基于强权重使mln对故障敏感的事实。为了减少强连接的数量,我们为新的学习算法引入了一个新的评估函数。该函数由两项组成:一项是输出误差,另一项是HO-weights(隐藏层和输出层之间的权重)的平方和。第二项旨在降低ho权值。通过减小ho权值,增强了对前一方法的容错性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partially weight minimization approach for fault tolerant multilayer neural networks
We propose a new learning algorithm to enhance fault tolerance of multilayer neural networks (MLNs). This method is based on the fact that strong weights make MLNs sensitive to faults. To decrease the number of strong connections, we introduce a new evaluation function for the new learning algorithm. The function consists of two terms: one is the output error and the other is the square sum of HO-weights (weighs between the hidden layer and output layer). The second term aims to decrease the value of HO-weights. By decreasing the value of only HO-weights, we enhance the fault tolerance against the previous method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信