增量递归排序分组——一种可加和不可加可分问题的分解策略

M. Komarnicki, M. Przewozniczek, H. Kwasnicka, K. Walkowiak
{"title":"增量递归排序分组——一种可加和不可加可分问题的分解策略","authors":"M. Komarnicki, M. Przewozniczek, H. Kwasnicka, K. Walkowiak","doi":"10.1145/3583133.3595846","DOIUrl":null,"url":null,"abstract":"Many real-world optimization problems may be classified as Large-Scale Global Optimization (LSGO) problems. When these high-dimensional problems are continuous, it was shown effective to embed a decomposition strategy into a Cooperative Co-Evolution (CC) framework. The effectiveness of the method that decomposes a problem into subproblems and optimizes them separately may depend on the decomposition accuracy and cost. Recent decomposition strategy advances focus mainly on Differential Grouping (DG). However, when a considered problem is nonadditively separable, DG-based strategies may report some variables as interacting, although the interaction between them does not exist. Monotonicity checking strategies do not suffer from this disadvantage. However, they suffer from another decomposition inaccuracy - monotonicity checking strategies may miss discovering many existing interactions. Therefore, Incremental Recursive Ranking Grouping (IRRG) is a new proposition that accurately decomposes both additively and nonadditively separable problems. The decomposition cost of IRRG is higher when compared with Recursive DG 3 (RDG3). Since the higher cost was a negligible part of the overall computational budget, optimization results of the considered CC frameworks were affected mainly by the decomposition accuracy.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incremental Recursive Ranking Grouping -- A Decomposition Strategy for Additively and Nonadditively Separable Problems\",\"authors\":\"M. Komarnicki, M. Przewozniczek, H. Kwasnicka, K. Walkowiak\",\"doi\":\"10.1145/3583133.3595846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many real-world optimization problems may be classified as Large-Scale Global Optimization (LSGO) problems. When these high-dimensional problems are continuous, it was shown effective to embed a decomposition strategy into a Cooperative Co-Evolution (CC) framework. The effectiveness of the method that decomposes a problem into subproblems and optimizes them separately may depend on the decomposition accuracy and cost. Recent decomposition strategy advances focus mainly on Differential Grouping (DG). However, when a considered problem is nonadditively separable, DG-based strategies may report some variables as interacting, although the interaction between them does not exist. Monotonicity checking strategies do not suffer from this disadvantage. However, they suffer from another decomposition inaccuracy - monotonicity checking strategies may miss discovering many existing interactions. Therefore, Incremental Recursive Ranking Grouping (IRRG) is a new proposition that accurately decomposes both additively and nonadditively separable problems. The decomposition cost of IRRG is higher when compared with Recursive DG 3 (RDG3). Since the higher cost was a negligible part of the overall computational budget, optimization results of the considered CC frameworks were affected mainly by the decomposition accuracy.\",\"PeriodicalId\":422029,\"journal\":{\"name\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3583133.3595846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3595846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多现实世界的优化问题都可以归类为大规模全局优化问题。当这些高维问题是连续的时,将分解策略嵌入到协同进化(CC)框架中是有效的。将问题分解为子问题并分别进行优化的方法的有效性可能取决于分解的精度和成本。最近的分解策略研究主要集中在差分分组(DG)上。然而,当考虑的问题是不可加可分的时,基于dg的策略可能会报告一些变量是相互作用的,尽管它们之间的相互作用并不存在。单调性检查策略没有这个缺点。然而,它们还存在另一个分解不准确的问题——单调性检查策略可能无法发现许多现有的交互。因此,增量递归排序分组(IRRG)是一个能够准确分解可加和不可加可分问题的新命题。与RDG3 (Recursive DG3)相比,IRRG的分解成本更高。由于较高的成本在整体计算预算中是可以忽略不计的一部分,因此所考虑的CC框架的优化结果主要受分解精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental Recursive Ranking Grouping -- A Decomposition Strategy for Additively and Nonadditively Separable Problems
Many real-world optimization problems may be classified as Large-Scale Global Optimization (LSGO) problems. When these high-dimensional problems are continuous, it was shown effective to embed a decomposition strategy into a Cooperative Co-Evolution (CC) framework. The effectiveness of the method that decomposes a problem into subproblems and optimizes them separately may depend on the decomposition accuracy and cost. Recent decomposition strategy advances focus mainly on Differential Grouping (DG). However, when a considered problem is nonadditively separable, DG-based strategies may report some variables as interacting, although the interaction between them does not exist. Monotonicity checking strategies do not suffer from this disadvantage. However, they suffer from another decomposition inaccuracy - monotonicity checking strategies may miss discovering many existing interactions. Therefore, Incremental Recursive Ranking Grouping (IRRG) is a new proposition that accurately decomposes both additively and nonadditively separable problems. The decomposition cost of IRRG is higher when compared with Recursive DG 3 (RDG3). Since the higher cost was a negligible part of the overall computational budget, optimization results of the considered CC frameworks were affected mainly by the decomposition accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信