时间,硬件和一致性

D. M. Barrington, N. Immerman
{"title":"时间,硬件和一致性","authors":"D. M. Barrington, N. Immerman","doi":"10.1109/SCT.1994.315806","DOIUrl":null,"url":null,"abstract":"We describe three orthogonal complexity measures: parallel time, amount of hardware, and degree of non-uniformity, which together parametrize most complexity classes. We show that the descriptive complexity framework neatly captures these measures using the parameters: quantifier depth, number of variable bits, and type of numeric predicates respectively. A fairly simple picture arises in which the basic questions in complexity theory-solved and unsolved-can be understood as questions about tradeoffs among these three dimensions.<<ETX>>","PeriodicalId":386782,"journal":{"name":"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Time, hardware, and uniformity\",\"authors\":\"D. M. Barrington, N. Immerman\",\"doi\":\"10.1109/SCT.1994.315806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe three orthogonal complexity measures: parallel time, amount of hardware, and degree of non-uniformity, which together parametrize most complexity classes. We show that the descriptive complexity framework neatly captures these measures using the parameters: quantifier depth, number of variable bits, and type of numeric predicates respectively. A fairly simple picture arises in which the basic questions in complexity theory-solved and unsolved-can be understood as questions about tradeoffs among these three dimensions.<<ETX>>\",\"PeriodicalId\":386782,\"journal\":{\"name\":\"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCT.1994.315806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1994.315806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

我们描述了三个正交的复杂性度量:并行时间、硬件数量和非均匀度,它们共同参数化了大多数复杂性类。我们展示了描述性复杂性框架使用参数巧妙地捕获这些度量:量词深度、可变位的数量和数字谓词的类型。一个相当简单的图景出现了,在这个图景中,复杂性理论中的基本问题——已解决的和未解决的——可以被理解为关于这三个维度之间权衡的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time, hardware, and uniformity
We describe three orthogonal complexity measures: parallel time, amount of hardware, and degree of non-uniformity, which together parametrize most complexity classes. We show that the descriptive complexity framework neatly captures these measures using the parameters: quantifier depth, number of variable bits, and type of numeric predicates respectively. A fairly simple picture arises in which the basic questions in complexity theory-solved and unsolved-can be understood as questions about tradeoffs among these three dimensions.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信