检查-混合GLDPC代码:通过超级检查系统地消除陷阱集

V. Ravanmehr, D. Declercq, B. Vasic
{"title":"检查-混合GLDPC代码:通过超级检查系统地消除陷阱集","authors":"V. Ravanmehr, D. Declercq, B. Vasic","doi":"10.1109/ISIT.2014.6874923","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new approach to constructing a class of check-hybrid generalized low-density parity-check (GLDPC) codes which are free of small trapping sets. This approach is based on converting selected checks of an LDPC code involving a trapping set to super checks corresponding to a shorter error correcting component code. In particular, we follow two goals in constructing the check-hybrid GLDPC codes: First, the super checks are replaced based on the knowledge of trapping sets of the global LDPC code. We show that by converting only some single checks to super checks the decoder corrects the errors on a trapping set and hence eliminates the trapping set. Second, the number of super checks required for eliminating certain trapping sets is minimized to reduce the rate-loss. We first give an algorithm to find a set of critical checks in a trapping set of an LDPC code and then we provide some upper bounds on the minimum number of critical checks needed to eliminate certain trapping sets in the parity-check matrix of an LDPC code. A possible fixed set for a class of check-hybrid codes is also given.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Check-hybrid GLDPC codes: Systematic elimination of trapping sets by super checks\",\"authors\":\"V. Ravanmehr, D. Declercq, B. Vasic\",\"doi\":\"10.1109/ISIT.2014.6874923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new approach to constructing a class of check-hybrid generalized low-density parity-check (GLDPC) codes which are free of small trapping sets. This approach is based on converting selected checks of an LDPC code involving a trapping set to super checks corresponding to a shorter error correcting component code. In particular, we follow two goals in constructing the check-hybrid GLDPC codes: First, the super checks are replaced based on the knowledge of trapping sets of the global LDPC code. We show that by converting only some single checks to super checks the decoder corrects the errors on a trapping set and hence eliminates the trapping set. Second, the number of super checks required for eliminating certain trapping sets is minimized to reduce the rate-loss. We first give an algorithm to find a set of critical checks in a trapping set of an LDPC code and then we provide some upper bounds on the minimum number of critical checks needed to eliminate certain trapping sets in the parity-check matrix of an LDPC code. A possible fixed set for a class of check-hybrid codes is also given.\",\"PeriodicalId\":127191,\"journal\":{\"name\":\"2014 IEEE International Symposium on Information Theory\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2014.6874923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6874923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种构造无小捕获集的校验-混合广义低密度奇偶校验码(GLDPC)的方法。这种方法基于将涉及捕获集的LDPC代码的选定检查转换为与较短的纠错组件代码相对应的超级检查。特别地,我们在构造check-hybrid GLDPC码时遵循两个目标:第一,基于全局LDPC码的捕获集知识替换超级check;我们证明,通过将一些单一检查转换为超级检查,解码器纠正了捕获集上的错误,从而消除了捕获集。其次,消除某些捕获集所需的超级检查的数量被最小化,以减少速率损失。我们首先给出了在LDPC码的陷阱集中找到一组关键检查的算法,然后给出了在LDPC码的奇偶校验矩阵中消除某些陷阱集所需的最小关键检查数的上界。给出了一类校验-混合码的一个可能的固定集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Check-hybrid GLDPC codes: Systematic elimination of trapping sets by super checks
In this paper, we propose a new approach to constructing a class of check-hybrid generalized low-density parity-check (GLDPC) codes which are free of small trapping sets. This approach is based on converting selected checks of an LDPC code involving a trapping set to super checks corresponding to a shorter error correcting component code. In particular, we follow two goals in constructing the check-hybrid GLDPC codes: First, the super checks are replaced based on the knowledge of trapping sets of the global LDPC code. We show that by converting only some single checks to super checks the decoder corrects the errors on a trapping set and hence eliminates the trapping set. Second, the number of super checks required for eliminating certain trapping sets is minimized to reduce the rate-loss. We first give an algorithm to find a set of critical checks in a trapping set of an LDPC code and then we provide some upper bounds on the minimum number of critical checks needed to eliminate certain trapping sets in the parity-check matrix of an LDPC code. A possible fixed set for a class of check-hybrid codes is also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信