僧伽罗语-英语语码混合文本的神经机器翻译

Archchana Kugathasan, S. Sumathipala
{"title":"僧伽罗语-英语语码混合文本的神经机器翻译","authors":"Archchana Kugathasan, S. Sumathipala","doi":"10.26615/978-954-452-072-4_082","DOIUrl":null,"url":null,"abstract":"Code-mixing has become a moving method of communication among multilingual speakers. Most of the social media content of the multilingual societies are written in code-mixed text. However, most of the current translation systems neglect to convert code-mixed texts to a standard language. Most of the user written code-mixed content in social media remains unprocessed due to the unavailability of linguistic resource such as parallel corpus. This paper proposes a Neural Machine Translation(NMT) model to translate the Sinhala-English code-mixed text to the Sinhala language. Due to the limited resources available for Sinhala-English code-mixed(SECM) text, a parallel corpus is created with SECM sentences and Sinhala sentences. Srilankan social media sites contain SECM texts more frequently than the standard languages. The model proposed for code-mixed text translation in this study is a combination of Encoder-Decoder framework with LSTM units and Teachers Forcing Algorithm. The translated sentences from the model are evaluated using BLEU(Bilingual Evaluation Understudy) metric. Our model achieved a remarkable BLEU score for the translation.","PeriodicalId":284493,"journal":{"name":"Recent Advances in Natural Language Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Neural Machine Translation for Sinhala-English Code-Mixed Text\",\"authors\":\"Archchana Kugathasan, S. Sumathipala\",\"doi\":\"10.26615/978-954-452-072-4_082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Code-mixing has become a moving method of communication among multilingual speakers. Most of the social media content of the multilingual societies are written in code-mixed text. However, most of the current translation systems neglect to convert code-mixed texts to a standard language. Most of the user written code-mixed content in social media remains unprocessed due to the unavailability of linguistic resource such as parallel corpus. This paper proposes a Neural Machine Translation(NMT) model to translate the Sinhala-English code-mixed text to the Sinhala language. Due to the limited resources available for Sinhala-English code-mixed(SECM) text, a parallel corpus is created with SECM sentences and Sinhala sentences. Srilankan social media sites contain SECM texts more frequently than the standard languages. The model proposed for code-mixed text translation in this study is a combination of Encoder-Decoder framework with LSTM units and Teachers Forcing Algorithm. The translated sentences from the model are evaluated using BLEU(Bilingual Evaluation Understudy) metric. Our model achieved a remarkable BLEU score for the translation.\",\"PeriodicalId\":284493,\"journal\":{\"name\":\"Recent Advances in Natural Language Processing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26615/978-954-452-072-4_082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-072-4_082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

语码混合已经成为多语言使用者之间的一种交流方式。多语言社会的大多数社交媒体内容都是用代码混合文本编写的。然而,目前大多数翻译系统忽略了将代码混合文本转换为标准语言。由于平行语料库等语言资源的缺乏,社交媒体中大部分用户编写的代码混合内容都没有得到处理。本文提出了一种神经机器翻译(NMT)模型,用于将僧伽罗语-英语代码混合文本翻译成僧伽罗语。由于僧伽罗语-英语代码混合(SECM)文本的资源有限,我们创建了一个由SECM句子和僧伽罗语句子组成的平行语料库。斯里兰卡的社交媒体网站包含SECM文本的频率高于标准语言。本文提出的代码混合文本翻译模型是将编码器-解码器框架与LSTM单元和教师强制算法相结合。使用BLEU(双语评价替补)度量对模型中的翻译句子进行评估。我们的模型在翻译中取得了显著的BLEU分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Machine Translation for Sinhala-English Code-Mixed Text
Code-mixing has become a moving method of communication among multilingual speakers. Most of the social media content of the multilingual societies are written in code-mixed text. However, most of the current translation systems neglect to convert code-mixed texts to a standard language. Most of the user written code-mixed content in social media remains unprocessed due to the unavailability of linguistic resource such as parallel corpus. This paper proposes a Neural Machine Translation(NMT) model to translate the Sinhala-English code-mixed text to the Sinhala language. Due to the limited resources available for Sinhala-English code-mixed(SECM) text, a parallel corpus is created with SECM sentences and Sinhala sentences. Srilankan social media sites contain SECM texts more frequently than the standard languages. The model proposed for code-mixed text translation in this study is a combination of Encoder-Decoder framework with LSTM units and Teachers Forcing Algorithm. The translated sentences from the model are evaluated using BLEU(Bilingual Evaluation Understudy) metric. Our model achieved a remarkable BLEU score for the translation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信