多目标进化算法中一种新的权值设计

Fangqing Gu, Hai-Lin Liu
{"title":"多目标进化算法中一种新的权值设计","authors":"Fangqing Gu, Hai-Lin Liu","doi":"10.1109/CIS.2010.37","DOIUrl":null,"url":null,"abstract":"This paper presents a method to improve the performance of MOEA/D. The idea is to approximate the Pareto front(PF) by using a linear interpolation of the non-dominant solutions. It propose a novel weight design method for multi-objective evolutionary algorithm. Even when the PF is complex, we can obtain the Pareto optimal solutions which are distributed uniformly over the PF. Some test functions are constructed to compare the performance of the proposed algorithm with that of MOEA/D. The results indicate that the proposed algorithm could significantly outperform MOEA/D on these test instances.","PeriodicalId":420515,"journal":{"name":"2010 International Conference on Computational Intelligence and Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"A Novel Weight Design in Multi-objective Evolutionary Algorithm\",\"authors\":\"Fangqing Gu, Hai-Lin Liu\",\"doi\":\"10.1109/CIS.2010.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method to improve the performance of MOEA/D. The idea is to approximate the Pareto front(PF) by using a linear interpolation of the non-dominant solutions. It propose a novel weight design method for multi-objective evolutionary algorithm. Even when the PF is complex, we can obtain the Pareto optimal solutions which are distributed uniformly over the PF. Some test functions are constructed to compare the performance of the proposed algorithm with that of MOEA/D. The results indicate that the proposed algorithm could significantly outperform MOEA/D on these test instances.\",\"PeriodicalId\":420515,\"journal\":{\"name\":\"2010 International Conference on Computational Intelligence and Security\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2010.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2010.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

本文提出了一种提高MOEA/D性能的方法。其思想是通过使用非主导解的线性插值来近似帕累托前(PF)。提出了一种新的多目标进化算法权值设计方法。即使在复杂的PF上,我们也能得到均匀分布在PF上的Pareto最优解,并构造了一些测试函数来比较该算法与MOEA/D算法的性能。结果表明,在这些测试实例上,该算法的性能明显优于MOEA/D。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Weight Design in Multi-objective Evolutionary Algorithm
This paper presents a method to improve the performance of MOEA/D. The idea is to approximate the Pareto front(PF) by using a linear interpolation of the non-dominant solutions. It propose a novel weight design method for multi-objective evolutionary algorithm. Even when the PF is complex, we can obtain the Pareto optimal solutions which are distributed uniformly over the PF. Some test functions are constructed to compare the performance of the proposed algorithm with that of MOEA/D. The results indicate that the proposed algorithm could significantly outperform MOEA/D on these test instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信