{"title":"基于边缘和云计算的深度学习分布式智能监控架构","authors":"Halil Can Kaskavalci, Sezer Gören","doi":"10.1109/Deep-ML.2019.00009","DOIUrl":null,"url":null,"abstract":"Smart surveillance is getting increasingly popular as technologies become easier to use and cheaper. Traditional surveillance records video footage to a storage device continuously. However, this generates enormous amount of data and reduces the life of the hard drive. Newer devices with Internet connection save footage to the Cloud. This feature comes with bandwidth requirements and extra Cloud costs. In this paper, we propose a deep learning based, distributed, and scalable surveillance architecture using Edge and Cloud computing. Our design reduces both the bandwidth and as well as the Cloud costs significantly by processing footage prior sending to the Cloud.","PeriodicalId":228378,"journal":{"name":"2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A Deep Learning Based Distributed Smart Surveillance Architecture using Edge and Cloud Computing\",\"authors\":\"Halil Can Kaskavalci, Sezer Gören\",\"doi\":\"10.1109/Deep-ML.2019.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart surveillance is getting increasingly popular as technologies become easier to use and cheaper. Traditional surveillance records video footage to a storage device continuously. However, this generates enormous amount of data and reduces the life of the hard drive. Newer devices with Internet connection save footage to the Cloud. This feature comes with bandwidth requirements and extra Cloud costs. In this paper, we propose a deep learning based, distributed, and scalable surveillance architecture using Edge and Cloud computing. Our design reduces both the bandwidth and as well as the Cloud costs significantly by processing footage prior sending to the Cloud.\",\"PeriodicalId\":228378,\"journal\":{\"name\":\"2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Deep-ML.2019.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Deep-ML.2019.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Deep Learning Based Distributed Smart Surveillance Architecture using Edge and Cloud Computing
Smart surveillance is getting increasingly popular as technologies become easier to use and cheaper. Traditional surveillance records video footage to a storage device continuously. However, this generates enormous amount of data and reduces the life of the hard drive. Newer devices with Internet connection save footage to the Cloud. This feature comes with bandwidth requirements and extra Cloud costs. In this paper, we propose a deep learning based, distributed, and scalable surveillance architecture using Edge and Cloud computing. Our design reduces both the bandwidth and as well as the Cloud costs significantly by processing footage prior sending to the Cloud.