一种增强球面演化的正弦余弦算法求解连续优化问题

Pengxing Cai, Haichuan Yang, Yu Zhang, Yuki Todo, Zheng Tang, Shangce Gao
{"title":"一种增强球面演化的正弦余弦算法求解连续优化问题","authors":"Pengxing Cai, Haichuan Yang, Yu Zhang, Yuki Todo, Zheng Tang, Shangce Gao","doi":"10.1109/ISCID51228.2020.00008","DOIUrl":null,"url":null,"abstract":"Spherical evolution (SE) is a relatively innovative algorithm. It transforms the original hypercube search into a spherical search. By this novel search style, SE expanded the search range. Sine cosine algorithm (SCA) creates multiple initial random candidate solutions and requires them to fluctuate outwards or towards the best solution using a mathematical model based on sine and cosine functions, which demonstrates that this algorithm can avoid local optima. In this article, we introduce SCA to enhance the convergence ability of SE. The experiment results on CEC2017 benchmark functions indicate the effectiveness of this hybridization, suggesting that the algorithm proposed is able to explore different regions of a search space, avoid local optima, converge towards the global optimum, and exploit promising regions of a search space during optimization effectively.","PeriodicalId":236797,"journal":{"name":"2020 13th International Symposium on Computational Intelligence and Design (ISCID)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Sine Cosine Algorithm Enhanced Spherical Evolution for Continuous Optimization Problems\",\"authors\":\"Pengxing Cai, Haichuan Yang, Yu Zhang, Yuki Todo, Zheng Tang, Shangce Gao\",\"doi\":\"10.1109/ISCID51228.2020.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spherical evolution (SE) is a relatively innovative algorithm. It transforms the original hypercube search into a spherical search. By this novel search style, SE expanded the search range. Sine cosine algorithm (SCA) creates multiple initial random candidate solutions and requires them to fluctuate outwards or towards the best solution using a mathematical model based on sine and cosine functions, which demonstrates that this algorithm can avoid local optima. In this article, we introduce SCA to enhance the convergence ability of SE. The experiment results on CEC2017 benchmark functions indicate the effectiveness of this hybridization, suggesting that the algorithm proposed is able to explore different regions of a search space, avoid local optima, converge towards the global optimum, and exploit promising regions of a search space during optimization effectively.\",\"PeriodicalId\":236797,\"journal\":{\"name\":\"2020 13th International Symposium on Computational Intelligence and Design (ISCID)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 13th International Symposium on Computational Intelligence and Design (ISCID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID51228.2020.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Symposium on Computational Intelligence and Design (ISCID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID51228.2020.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

球面进化算法(SE)是一种比较新颖的算法。它将原来的超立方体搜索转换为球面搜索。通过这种新颖的搜索方式,SE扩展了搜索范围。正弦余弦算法(SCA)创建了多个初始随机候选解,并使用基于正弦和余弦函数的数学模型要求它们向外或向最佳解波动,这表明该算法可以避免局部最优。在本文中,我们引入SCA来增强SE的收敛能力。在CEC2017基准函数上的实验结果表明了这种杂交的有效性,表明所提出的算法能够在搜索空间中探索不同区域,避免局部最优,向全局最优收敛,并在优化过程中有效地利用搜索空间的有前途区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sine Cosine Algorithm Enhanced Spherical Evolution for Continuous Optimization Problems
Spherical evolution (SE) is a relatively innovative algorithm. It transforms the original hypercube search into a spherical search. By this novel search style, SE expanded the search range. Sine cosine algorithm (SCA) creates multiple initial random candidate solutions and requires them to fluctuate outwards or towards the best solution using a mathematical model based on sine and cosine functions, which demonstrates that this algorithm can avoid local optima. In this article, we introduce SCA to enhance the convergence ability of SE. The experiment results on CEC2017 benchmark functions indicate the effectiveness of this hybridization, suggesting that the algorithm proposed is able to explore different regions of a search space, avoid local optima, converge towards the global optimum, and exploit promising regions of a search space during optimization effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信