基于正则表达式的基因表达数据模式匹配识别异常基因组

L. Sharmila, U. Sakthi, A. Geethanjali, S. Sagadevan
{"title":"基于正则表达式的基因表达数据模式匹配识别异常基因组","authors":"L. Sharmila, U. Sakthi, A. Geethanjali, S. Sagadevan","doi":"10.1109/ICRTCCM.2017.71","DOIUrl":null,"url":null,"abstract":"The main idea of this paper is to detect and extract an input pattern from a gene expression dataset. Human behavior and health conditions can be identified and classified through their genomic data in accurate manner. In this paper it is motivated to search and identify the abnormal pattern availability in a gene expression data. To do this a Regular Expression based Pattern Matching (REPM) method is proposed for detecting, identifying and counting number of abnormal pattern occurrences in a given dataset. This approach is experimented in MATLAB software the results verified to check the efficiency of REPM method.","PeriodicalId":134897,"journal":{"name":"2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM)","volume":"335 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Regular Expression Based Pattern Matching for Gene Expression Data to Identify the Abnormality Gnome\",\"authors\":\"L. Sharmila, U. Sakthi, A. Geethanjali, S. Sagadevan\",\"doi\":\"10.1109/ICRTCCM.2017.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main idea of this paper is to detect and extract an input pattern from a gene expression dataset. Human behavior and health conditions can be identified and classified through their genomic data in accurate manner. In this paper it is motivated to search and identify the abnormal pattern availability in a gene expression data. To do this a Regular Expression based Pattern Matching (REPM) method is proposed for detecting, identifying and counting number of abnormal pattern occurrences in a given dataset. This approach is experimented in MATLAB software the results verified to check the efficiency of REPM method.\",\"PeriodicalId\":134897,\"journal\":{\"name\":\"2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM)\",\"volume\":\"335 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRTCCM.2017.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTCCM.2017.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文的主要思想是从基因表达数据集中检测和提取输入模式。人类的行为和健康状况可以通过他们的基因组数据准确地识别和分类。本文的目的是寻找和识别基因表达数据中的异常模式可用性。为此,提出了一种基于正则表达式的模式匹配(REPM)方法,用于检测、识别和计数给定数据集中异常模式的出现次数。该方法在MATLAB软件中进行了实验,结果验证了REPM方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regular Expression Based Pattern Matching for Gene Expression Data to Identify the Abnormality Gnome
The main idea of this paper is to detect and extract an input pattern from a gene expression dataset. Human behavior and health conditions can be identified and classified through their genomic data in accurate manner. In this paper it is motivated to search and identify the abnormal pattern availability in a gene expression data. To do this a Regular Expression based Pattern Matching (REPM) method is proposed for detecting, identifying and counting number of abnormal pattern occurrences in a given dataset. This approach is experimented in MATLAB software the results verified to check the efficiency of REPM method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信