{"title":"预测编码与地形变分自编码器","authors":"Thomas Anderson Keller, M. Welling","doi":"10.1109/ICCVW54120.2021.00127","DOIUrl":null,"url":null,"abstract":"Predictive coding is a model of visual processing which suggests that the brain is a generative model of input, with prediction error serving as a signal for both learning and attention. In this work, we show how the equivariant capsules learned by a Topographic Variational Autoen-coder can be extended to fit within the predictive coding framework by treating the slow rolling of capsule activations as the forward prediction operator. We demonstrate quantitatively that such an extension leads to improved sequence modeling compared with both topographic and non-topographic baselines, and that the resulting forward predictions are qualitatively more coherent with the provided partial input transformations.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predictive Coding with Topographic Variational Autoencoders\",\"authors\":\"Thomas Anderson Keller, M. Welling\",\"doi\":\"10.1109/ICCVW54120.2021.00127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictive coding is a model of visual processing which suggests that the brain is a generative model of input, with prediction error serving as a signal for both learning and attention. In this work, we show how the equivariant capsules learned by a Topographic Variational Autoen-coder can be extended to fit within the predictive coding framework by treating the slow rolling of capsule activations as the forward prediction operator. We demonstrate quantitatively that such an extension leads to improved sequence modeling compared with both topographic and non-topographic baselines, and that the resulting forward predictions are qualitatively more coherent with the provided partial input transformations.\",\"PeriodicalId\":226794,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVW54120.2021.00127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predictive Coding with Topographic Variational Autoencoders
Predictive coding is a model of visual processing which suggests that the brain is a generative model of input, with prediction error serving as a signal for both learning and attention. In this work, we show how the equivariant capsules learned by a Topographic Variational Autoen-coder can be extended to fit within the predictive coding framework by treating the slow rolling of capsule activations as the forward prediction operator. We demonstrate quantitatively that such an extension leads to improved sequence modeling compared with both topographic and non-topographic baselines, and that the resulting forward predictions are qualitatively more coherent with the provided partial input transformations.