基于密度地图学习的无人机汽车计数

Jingxian Huang, Guanchen Ding, Yujia Guo, Daiqin Yang, Sihan Wang, Tao Wang, Yunfei Zhang
{"title":"基于密度地图学习的无人机汽车计数","authors":"Jingxian Huang, Guanchen Ding, Yujia Guo, Daiqin Yang, Sihan Wang, Tao Wang, Yunfei Zhang","doi":"10.1109/VCIP49819.2020.9301785","DOIUrl":null,"url":null,"abstract":"Car counting on drone-based images is a challenging task in computer vision. Most advanced methods for counting are based on density maps. Usually, density maps are first generated by convolving ground truth point maps with a Gaussian kernel for later model learning (generation). Then, the counting network learns to predict density maps from input images (estimation). Most studies focus on the estimation problem while overlooking the generation problem. In this paper, a training framework is proposed to generate density maps by learning and train generation and estimation subnetworks jointly. Experiments demonstrate that our method outperforms other density map-based methods and shows the best performance on drone-based car counting.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Drone-Based Car Counting via Density Map Learning\",\"authors\":\"Jingxian Huang, Guanchen Ding, Yujia Guo, Daiqin Yang, Sihan Wang, Tao Wang, Yunfei Zhang\",\"doi\":\"10.1109/VCIP49819.2020.9301785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Car counting on drone-based images is a challenging task in computer vision. Most advanced methods for counting are based on density maps. Usually, density maps are first generated by convolving ground truth point maps with a Gaussian kernel for later model learning (generation). Then, the counting network learns to predict density maps from input images (estimation). Most studies focus on the estimation problem while overlooking the generation problem. In this paper, a training framework is proposed to generate density maps by learning and train generation and estimation subnetworks jointly. Experiments demonstrate that our method outperforms other density map-based methods and shows the best performance on drone-based car counting.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在计算机视觉中,基于无人机图像的汽车计数是一项具有挑战性的任务。最先进的计数方法是基于密度图。通常,密度图首先是通过将地面真值点映射与高斯核进行卷积来生成的,以便稍后进行模型学习(生成)。然后,计数网络学习从输入图像中预测密度图(估计)。大多数研究都集中在估计问题上,而忽略了生成问题。本文提出了一种通过学习和训练生成和估计子网来生成密度图的训练框架。实验表明,我们的方法优于其他基于密度图的方法,并在基于无人机的汽车计数上表现出最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Drone-Based Car Counting via Density Map Learning
Car counting on drone-based images is a challenging task in computer vision. Most advanced methods for counting are based on density maps. Usually, density maps are first generated by convolving ground truth point maps with a Gaussian kernel for later model learning (generation). Then, the counting network learns to predict density maps from input images (estimation). Most studies focus on the estimation problem while overlooking the generation problem. In this paper, a training framework is proposed to generate density maps by learning and train generation and estimation subnetworks jointly. Experiments demonstrate that our method outperforms other density map-based methods and shows the best performance on drone-based car counting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信