基于神经网络的车辆和行人检测视频分析系统

P. Babayan, M. Ershov, D. Y. Erokhin
{"title":"基于神经网络的车辆和行人检测视频分析系统","authors":"P. Babayan, M. Ershov, D. Y. Erokhin","doi":"10.1109/MECO.2019.8760125","DOIUrl":null,"url":null,"abstract":"In our research we compare various neural network architectures that are used for object detection and recognition. In this work vehicles and pedestrians are considered objects of interest. Modern artificial neural networks are able to detect and localize objects of known classes. This allows them to be used in various technical vision systems and video analysis systems. In this paper we compare three architectures (YOLO, Faster R-CNN, SSD) by the following criteria: processing speed, mAP, precision and recall.","PeriodicalId":141324,"journal":{"name":"2019 8th Mediterranean Conference on Embedded Computing (MECO)","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Neural Network-Based Vehicle and Pedestrian Detection for Video Analysis System\",\"authors\":\"P. Babayan, M. Ershov, D. Y. Erokhin\",\"doi\":\"10.1109/MECO.2019.8760125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our research we compare various neural network architectures that are used for object detection and recognition. In this work vehicles and pedestrians are considered objects of interest. Modern artificial neural networks are able to detect and localize objects of known classes. This allows them to be used in various technical vision systems and video analysis systems. In this paper we compare three architectures (YOLO, Faster R-CNN, SSD) by the following criteria: processing speed, mAP, precision and recall.\",\"PeriodicalId\":141324,\"journal\":{\"name\":\"2019 8th Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO.2019.8760125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO.2019.8760125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在我们的研究中,我们比较了用于目标检测和识别的各种神经网络架构。在这项工作中,车辆和行人被认为是感兴趣的对象。现代人工神经网络能够检测和定位已知类别的对象。这使得它们可以用于各种技术视觉系统和视频分析系统。在本文中,我们通过以下标准比较了三种架构(YOLO, Faster R-CNN, SSD):处理速度,mAP,精度和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network-Based Vehicle and Pedestrian Detection for Video Analysis System
In our research we compare various neural network architectures that are used for object detection and recognition. In this work vehicles and pedestrians are considered objects of interest. Modern artificial neural networks are able to detect and localize objects of known classes. This allows them to be used in various technical vision systems and video analysis systems. In this paper we compare three architectures (YOLO, Faster R-CNN, SSD) by the following criteria: processing speed, mAP, precision and recall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信