连续时间随机漫步和时空分数阶微分方程

M. Meerschaert, H. Scheffler
{"title":"连续时间随机漫步和时空分数阶微分方程","authors":"M. Meerschaert, H. Scheffler","doi":"10.1515/9783110571622-016","DOIUrl":null,"url":null,"abstract":"The continuous time random walk is a model from statistical physics that elucidates the physical interpretation of the space-time fractional diffusion equation. In this model, each step in the random walk is separated by a random waiting time. The long-time limit of thismodel is governedbya fractional diffusion equation. If the step lengthof the randomwalk followsapower law,weget a spacefractional diffusion equation. If the waiting times also follow a power law, we get a space-time fractional diffusion equation. The index of the power law equals the order of the fractional derivative. If the waiting times and jumps are dependent random variables, the governing equation involves coupled space-time fractional derivatives.","PeriodicalId":385044,"journal":{"name":"Basic Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Continuous time random walks and space-time fractional differential equations\",\"authors\":\"M. Meerschaert, H. Scheffler\",\"doi\":\"10.1515/9783110571622-016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuous time random walk is a model from statistical physics that elucidates the physical interpretation of the space-time fractional diffusion equation. In this model, each step in the random walk is separated by a random waiting time. The long-time limit of thismodel is governedbya fractional diffusion equation. If the step lengthof the randomwalk followsapower law,weget a spacefractional diffusion equation. If the waiting times also follow a power law, we get a space-time fractional diffusion equation. The index of the power law equals the order of the fractional derivative. If the waiting times and jumps are dependent random variables, the governing equation involves coupled space-time fractional derivatives.\",\"PeriodicalId\":385044,\"journal\":{\"name\":\"Basic Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/9783110571622-016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110571622-016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

连续时间随机游走是统计物理学中的一个模型,它阐明了时空分数扩散方程的物理解释。在该模型中,随机行走的每一步都被一个随机等待时间隔开。该模型的长期极限由分数扩散方程控制。如果随机漫步的步长服从幂律,我们得到一个空间分数扩散方程。如果等待时间也遵循幂律,我们得到一个时空分数扩散方程。幂律的指数等于分数阶导数的阶数。如果等待时间和跳跃是相关随机变量,则控制方程涉及耦合的时空分数阶导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous time random walks and space-time fractional differential equations
The continuous time random walk is a model from statistical physics that elucidates the physical interpretation of the space-time fractional diffusion equation. In this model, each step in the random walk is separated by a random waiting time. The long-time limit of thismodel is governedbya fractional diffusion equation. If the step lengthof the randomwalk followsapower law,weget a spacefractional diffusion equation. If the waiting times also follow a power law, we get a space-time fractional diffusion equation. The index of the power law equals the order of the fractional derivative. If the waiting times and jumps are dependent random variables, the governing equation involves coupled space-time fractional derivatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信