VisCrime:一个多维来源的犯罪轨迹可视化系统

Ahsan Morshed, Pei-wei Tsai, P. Jayaraman, T. Sellis, Dimitrios Georgakopoulos, Samuel V. S. Burke, Shane Joachim, Ming-Sheng Quah, Stefan Tsvetkov, Jason Liew, C. Jenkins
{"title":"VisCrime:一个多维来源的犯罪轨迹可视化系统","authors":"Ahsan Morshed, Pei-wei Tsai, P. Jayaraman, T. Sellis, Dimitrios Georgakopoulos, Samuel V. S. Burke, Shane Joachim, Ming-Sheng Quah, Stefan Tsvetkov, Jason Liew, C. Jenkins","doi":"10.1145/3289600.3290617","DOIUrl":null,"url":null,"abstract":"Open multidimensional data from existing sources and social media often carries insightful information on social issues. With the increase of high volume data and the proliferation of visual analytics platforms, users can more easily interact with and pick out meaningful information from a large dataset. In this paper, we present VisCrime, a system that uses visual analytics to maps out crimes that have occurred in a region/neighbourhood. VisCrime is underpinned by a novel trajectory algorithm that is used to create trajectories from open data sources that reports incidents of crime and data gathered from social media. Our system can be accessed at http://viscrime.ml/deckmap","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"VisCrime: A Crime Visualisation System for Crime Trajectory from Multi-Dimensional Sources\",\"authors\":\"Ahsan Morshed, Pei-wei Tsai, P. Jayaraman, T. Sellis, Dimitrios Georgakopoulos, Samuel V. S. Burke, Shane Joachim, Ming-Sheng Quah, Stefan Tsvetkov, Jason Liew, C. Jenkins\",\"doi\":\"10.1145/3289600.3290617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Open multidimensional data from existing sources and social media often carries insightful information on social issues. With the increase of high volume data and the proliferation of visual analytics platforms, users can more easily interact with and pick out meaningful information from a large dataset. In this paper, we present VisCrime, a system that uses visual analytics to maps out crimes that have occurred in a region/neighbourhood. VisCrime is underpinned by a novel trajectory algorithm that is used to create trajectories from open data sources that reports incidents of crime and data gathered from social media. Our system can be accessed at http://viscrime.ml/deckmap\",\"PeriodicalId\":143253,\"journal\":{\"name\":\"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3289600.3290617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3289600.3290617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

来自现有来源和社交媒体的开放多维数据通常包含有关社会问题的深刻信息。随着大数据量的增加和可视化分析平台的激增,用户可以更容易地与大数据集交互并从中挑选出有意义的信息。在本文中,我们介绍了VisCrime,这是一个使用可视化分析来绘制区域/社区发生的犯罪地图的系统。VisCrime的基础是一种新的轨迹算法,该算法用于从公开数据源(报告犯罪事件和从社交媒体收集的数据)创建轨迹。我们的系统可以访问http://viscrime.ml/deckmap
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VisCrime: A Crime Visualisation System for Crime Trajectory from Multi-Dimensional Sources
Open multidimensional data from existing sources and social media often carries insightful information on social issues. With the increase of high volume data and the proliferation of visual analytics platforms, users can more easily interact with and pick out meaningful information from a large dataset. In this paper, we present VisCrime, a system that uses visual analytics to maps out crimes that have occurred in a region/neighbourhood. VisCrime is underpinned by a novel trajectory algorithm that is used to create trajectories from open data sources that reports incidents of crime and data gathered from social media. Our system can be accessed at http://viscrime.ml/deckmap
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信