{"title":"基于折叠平均技术的1.8V 8位500MSPS折叠插值CMOS a /D转换器设计","authors":"Dongjin Lee, Jaewon Song, Jongha Shin, Sanghoon Hwang, Minkyu Song, Tad Wysocki","doi":"10.1109/ECCTD.2007.4529606","DOIUrl":null,"url":null,"abstract":"In this paper, a CMOS analog-to-digital converter (ADC) with an 8-bit 500 MSPS at 1.8 V is designed. The architecture of the proposed ADC is based on a Folding ADC with a cascaded-folding and a cascaded-interpolation structure. A self-linearized preamplifier with source degeneration technique and a folder averaging technique for the high-performance are introduced. Further, a novel auto-switching encoder is also proposed. The chip has been fabricated with 0.18mu m 1-poly 5-metal CMOS technology. The active chip area is 0.79 mm2 and it consumes about 200 mW at 1.8 V power supply. The DNL and INL are within plusmn0.6/plusmn0.6LSB, respectively. The measured result of SNDR is 47.05dB.","PeriodicalId":445822,"journal":{"name":"2007 18th European Conference on Circuit Theory and Design","volume":"204 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Design of a 1.8V 8-bit 500MSPS folding-interpolation CMOS A/D converter with a folder averaging technique\",\"authors\":\"Dongjin Lee, Jaewon Song, Jongha Shin, Sanghoon Hwang, Minkyu Song, Tad Wysocki\",\"doi\":\"10.1109/ECCTD.2007.4529606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a CMOS analog-to-digital converter (ADC) with an 8-bit 500 MSPS at 1.8 V is designed. The architecture of the proposed ADC is based on a Folding ADC with a cascaded-folding and a cascaded-interpolation structure. A self-linearized preamplifier with source degeneration technique and a folder averaging technique for the high-performance are introduced. Further, a novel auto-switching encoder is also proposed. The chip has been fabricated with 0.18mu m 1-poly 5-metal CMOS technology. The active chip area is 0.79 mm2 and it consumes about 200 mW at 1.8 V power supply. The DNL and INL are within plusmn0.6/plusmn0.6LSB, respectively. The measured result of SNDR is 47.05dB.\",\"PeriodicalId\":445822,\"journal\":{\"name\":\"2007 18th European Conference on Circuit Theory and Design\",\"volume\":\"204 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 18th European Conference on Circuit Theory and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCTD.2007.4529606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 18th European Conference on Circuit Theory and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD.2007.4529606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a 1.8V 8-bit 500MSPS folding-interpolation CMOS A/D converter with a folder averaging technique
In this paper, a CMOS analog-to-digital converter (ADC) with an 8-bit 500 MSPS at 1.8 V is designed. The architecture of the proposed ADC is based on a Folding ADC with a cascaded-folding and a cascaded-interpolation structure. A self-linearized preamplifier with source degeneration technique and a folder averaging technique for the high-performance are introduced. Further, a novel auto-switching encoder is also proposed. The chip has been fabricated with 0.18mu m 1-poly 5-metal CMOS technology. The active chip area is 0.79 mm2 and it consumes about 200 mW at 1.8 V power supply. The DNL and INL are within plusmn0.6/plusmn0.6LSB, respectively. The measured result of SNDR is 47.05dB.