用户生成医学文本的词汇规范化

A. Dirkson, S. Verberne, G. van Oortmerssen, Wessel Kraaij
{"title":"用户生成医学文本的词汇规范化","authors":"A. Dirkson, S. Verberne, G. van Oortmerssen, Wessel Kraaij","doi":"10.18653/v1/W19-3202","DOIUrl":null,"url":null,"abstract":"In the medical domain, user-generated social media text is increasingly used as a valuable complementary knowledge source to scientific medical literature. The extraction of this knowledge is complicated by colloquial language use and misspellings. Yet, lexical normalization of such data has not been addressed properly. This paper presents an unsupervised, data-driven spelling correction module for medical social media. Our method outperforms state-of-the-art spelling correction and can detect mistakes with an F0.5 of 0.888. Additionally, we present a novel corpus for spelling mistake detection and correction on a medical patient forum.","PeriodicalId":265570,"journal":{"name":"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task","volume":"48 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lexical Normalization of User-Generated Medical Text\",\"authors\":\"A. Dirkson, S. Verberne, G. van Oortmerssen, Wessel Kraaij\",\"doi\":\"10.18653/v1/W19-3202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the medical domain, user-generated social media text is increasingly used as a valuable complementary knowledge source to scientific medical literature. The extraction of this knowledge is complicated by colloquial language use and misspellings. Yet, lexical normalization of such data has not been addressed properly. This paper presents an unsupervised, data-driven spelling correction module for medical social media. Our method outperforms state-of-the-art spelling correction and can detect mistakes with an F0.5 of 0.888. Additionally, we present a novel corpus for spelling mistake detection and correction on a medical patient forum.\",\"PeriodicalId\":265570,\"journal\":{\"name\":\"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task\",\"volume\":\"48 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-3202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在医学领域,用户生成的社交媒体文本越来越多地被用作科学医学文献的有价值的补充知识来源。口语语言的使用和拼写错误使这种知识的提取变得复杂。然而,这些数据的词法规范化还没有得到适当的解决。本文提出了一种用于医疗社交媒体的无监督、数据驱动的拼写纠正模块。我们的方法优于最先进的拼写纠正,可以检测错误,F0.5为0.888。此外,我们提出了一个新的语料库拼写错误的检测和纠正在医疗病人论坛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lexical Normalization of User-Generated Medical Text
In the medical domain, user-generated social media text is increasingly used as a valuable complementary knowledge source to scientific medical literature. The extraction of this knowledge is complicated by colloquial language use and misspellings. Yet, lexical normalization of such data has not been addressed properly. This paper presents an unsupervised, data-driven spelling correction module for medical social media. Our method outperforms state-of-the-art spelling correction and can detect mistakes with an F0.5 of 0.888. Additionally, we present a novel corpus for spelling mistake detection and correction on a medical patient forum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信