{"title":"k-Server问题的多对数竞争算法","authors":"N. Bansal, Niv Buchbinder, A. Madry, J. Naor","doi":"10.1145/2783434","DOIUrl":null,"url":null,"abstract":"We give the first polylogarithmic-competitive randomized algorithm for the k-server problem on an arbitrary finite metric space. In particular, our algorithm achieves a competitive ratio of Õ(log3 n log2 k) for any metric space on n points. This improves upon the (2k-1)-competitive algorithm of Koutsoupias and Papadimitriou (J. ACM 1995) whenever n is sub-exponential in k.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"135","resultStr":"{\"title\":\"A Polylogarithmic-Competitive Algorithm for the k-Server Problem\",\"authors\":\"N. Bansal, Niv Buchbinder, A. Madry, J. Naor\",\"doi\":\"10.1145/2783434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give the first polylogarithmic-competitive randomized algorithm for the k-server problem on an arbitrary finite metric space. In particular, our algorithm achieves a competitive ratio of Õ(log3 n log2 k) for any metric space on n points. This improves upon the (2k-1)-competitive algorithm of Koutsoupias and Papadimitriou (J. ACM 1995) whenever n is sub-exponential in k.\",\"PeriodicalId\":326048,\"journal\":{\"name\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"135\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2783434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 135
摘要
给出了任意有限度量空间上k-server问题的第一个多对数竞争随机化算法。特别是,我们的算法在n个点的任何度量空间中实现了Õ(log3 n log2 k)的竞争比。这改进了Koutsoupias和Papadimitriou (J. ACM 1995)的(2k-1)竞争算法,当n是k的次指数时。
A Polylogarithmic-Competitive Algorithm for the k-Server Problem
We give the first polylogarithmic-competitive randomized algorithm for the k-server problem on an arbitrary finite metric space. In particular, our algorithm achieves a competitive ratio of Õ(log3 n log2 k) for any metric space on n points. This improves upon the (2k-1)-competitive algorithm of Koutsoupias and Papadimitriou (J. ACM 1995) whenever n is sub-exponential in k.