基于单摄像头和三维道路几何恢复的无人机地面目标跟踪与轨迹预测

Yingmao Li, E. Doucette, J. Curtis, N. Gans
{"title":"基于单摄像头和三维道路几何恢复的无人机地面目标跟踪与轨迹预测","authors":"Yingmao Li, E. Doucette, J. Curtis, N. Gans","doi":"10.23919/ACC.2017.7963122","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method to address the dual problem of ground target tracking in the image plane and 3D road geometry recovery using a single vision sensor on-board an unmanned aerial vehicle. We recover the road geometry from a single aerial image by a novel structure from motion algorithm with the simple assumption that road or lane boundaries are parallel curves and do not have significant twist. The coordinate of the ground target in the camera frame is then estimated using the recovered road geometry. An extended Kalman filter is finally applied to track and predict the trajectory of the target using recent target motion and the road geometry. The experimental results on simulated data and real world image show the feasibility of our approach.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"79 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ground target tracking and trajectory prediction by UAV using a single camera and 3D road geometry recovery\",\"authors\":\"Yingmao Li, E. Doucette, J. Curtis, N. Gans\",\"doi\":\"10.23919/ACC.2017.7963122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new method to address the dual problem of ground target tracking in the image plane and 3D road geometry recovery using a single vision sensor on-board an unmanned aerial vehicle. We recover the road geometry from a single aerial image by a novel structure from motion algorithm with the simple assumption that road or lane boundaries are parallel curves and do not have significant twist. The coordinate of the ground target in the camera frame is then estimated using the recovered road geometry. An extended Kalman filter is finally applied to track and predict the trajectory of the target using recent target motion and the road geometry. The experimental results on simulated data and real world image show the feasibility of our approach.\",\"PeriodicalId\":422926,\"journal\":{\"name\":\"2017 American Control Conference (ACC)\",\"volume\":\"79 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2017.7963122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种利用单视觉传感器解决无人机图像平面上地面目标跟踪和三维道路几何恢复双重问题的新方法。在假设道路或车道边界是平行曲线且没有明显扭曲的前提下,采用一种新颖的运动结构算法从单幅航拍图像中恢复道路几何形状。然后使用恢复的道路几何形状估计相机帧中地面目标的坐标。最后应用扩展卡尔曼滤波,利用目标最近的运动和道路几何形状来跟踪和预测目标的轨迹。仿真数据和真实图像的实验结果表明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ground target tracking and trajectory prediction by UAV using a single camera and 3D road geometry recovery
In this paper, we propose a new method to address the dual problem of ground target tracking in the image plane and 3D road geometry recovery using a single vision sensor on-board an unmanned aerial vehicle. We recover the road geometry from a single aerial image by a novel structure from motion algorithm with the simple assumption that road or lane boundaries are parallel curves and do not have significant twist. The coordinate of the ground target in the camera frame is then estimated using the recovered road geometry. An extended Kalman filter is finally applied to track and predict the trajectory of the target using recent target motion and the road geometry. The experimental results on simulated data and real world image show the feasibility of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信