{"title":"基于两两部分相似度约束的非负字典学习","authors":"Xu Zhou, Pak Lun Kevin Ding, Baoxin Li","doi":"10.1109/ICME.2017.8019392","DOIUrl":null,"url":null,"abstract":"Discriminative dictionary learning has been widely used in many applications such as face retrieval / recognition and image classification, where the labels of the training data are utilized to improve the discriminative power of the learned dictionary. This paper deals with a new problem of learning a dictionary for associating pairs of images in applications such as face image retrieval. Compared with a typical supervised learning task, in this case the labeling information is very limited (e.g. only some training pairs are known to be associated). Further, associated pairs may be considered similar only after excluding certain regions (e.g. sunglasses in a face image). We formulate a dictionary learning problem under these considerations and design an algorithm to solve the problem. We also provide a proof for the convergence of the algorithm. Experiments and results suggest that the proposed method is advantageous over common baselines.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-negative dictionary learning with pairwise partial similarity constraint\",\"authors\":\"Xu Zhou, Pak Lun Kevin Ding, Baoxin Li\",\"doi\":\"10.1109/ICME.2017.8019392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discriminative dictionary learning has been widely used in many applications such as face retrieval / recognition and image classification, where the labels of the training data are utilized to improve the discriminative power of the learned dictionary. This paper deals with a new problem of learning a dictionary for associating pairs of images in applications such as face image retrieval. Compared with a typical supervised learning task, in this case the labeling information is very limited (e.g. only some training pairs are known to be associated). Further, associated pairs may be considered similar only after excluding certain regions (e.g. sunglasses in a face image). We formulate a dictionary learning problem under these considerations and design an algorithm to solve the problem. We also provide a proof for the convergence of the algorithm. Experiments and results suggest that the proposed method is advantageous over common baselines.\",\"PeriodicalId\":330977,\"journal\":{\"name\":\"2017 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2017.8019392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-negative dictionary learning with pairwise partial similarity constraint
Discriminative dictionary learning has been widely used in many applications such as face retrieval / recognition and image classification, where the labels of the training data are utilized to improve the discriminative power of the learned dictionary. This paper deals with a new problem of learning a dictionary for associating pairs of images in applications such as face image retrieval. Compared with a typical supervised learning task, in this case the labeling information is very limited (e.g. only some training pairs are known to be associated). Further, associated pairs may be considered similar only after excluding certain regions (e.g. sunglasses in a face image). We formulate a dictionary learning problem under these considerations and design an algorithm to solve the problem. We also provide a proof for the convergence of the algorithm. Experiments and results suggest that the proposed method is advantageous over common baselines.