驯服一种复活的紫外线

M. Borinsky, D. Broadhurst
{"title":"驯服一种复活的紫外线","authors":"M. Borinsky, D. Broadhurst","doi":"10.22323/1.416.0013","DOIUrl":null,"url":null,"abstract":"Perturbative expansions in quantum field theory diverge for at least two reasons: the number of Feynman diagrams increases dramatically with the loop number and the process of renormalization may make the contribution of some diagrams large. We give an example of the second problem, from an ultra-violent renormalon of $\\phi^3$ theory in 6 dimensions, where we can compute to very high loop-order. Taming this renormalon involves recent work on resurgence. This challenge is much more demanding than the corresponding problem for Yukawa theory in 4 dimensions.","PeriodicalId":151433,"journal":{"name":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taming a resurgent ultra-violet renormalon\",\"authors\":\"M. Borinsky, D. Broadhurst\",\"doi\":\"10.22323/1.416.0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perturbative expansions in quantum field theory diverge for at least two reasons: the number of Feynman diagrams increases dramatically with the loop number and the process of renormalization may make the contribution of some diagrams large. We give an example of the second problem, from an ultra-violent renormalon of $\\\\phi^3$ theory in 6 dimensions, where we can compute to very high loop-order. Taming this renormalon involves recent work on resurgence. This challenge is much more demanding than the corresponding problem for Yukawa theory in 4 dimensions.\",\"PeriodicalId\":151433,\"journal\":{\"name\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.416.0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.416.0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子场论中的微扰展开发散至少有两个原因:费曼图的数量随着环数的增加而急剧增加,重整化过程可能使某些图的贡献很大。我们给出了第二个问题的例子,从$\ \ ^3$理论在6维中的一个极端重整,在那里我们可以计算到非常高的循环阶。要驯服这种常态,就需要最近的复苏工作。这一挑战比汤川理论在四维中的相应问题要求更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Taming a resurgent ultra-violet renormalon
Perturbative expansions in quantum field theory diverge for at least two reasons: the number of Feynman diagrams increases dramatically with the loop number and the process of renormalization may make the contribution of some diagrams large. We give an example of the second problem, from an ultra-violent renormalon of $\phi^3$ theory in 6 dimensions, where we can compute to very high loop-order. Taming this renormalon involves recent work on resurgence. This challenge is much more demanding than the corresponding problem for Yukawa theory in 4 dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信