基于二进制子空间啁啾的复线码本

O. Tirkkonen, A. Calderbank
{"title":"基于二进制子空间啁啾的复线码本","authors":"O. Tirkkonen, A. Calderbank","doi":"10.1109/ITW44776.2019.8989259","DOIUrl":null,"url":null,"abstract":"Motivated by problems in machine-type wireless communications, we consider codebooks of complex Grassmannian lines in $N = 2^{m}$ dimensions. Binary Chirp (BC) codebooks of prior art are expanded to codebooks of Binary Subspace Chirps (BSSCs), where there is a binary chirp in a subset of the dimensions, while in the remaining dimensions there is a zero. BSSC codebooks have the same minimum distance as BC codebooks, while the cardinality is asymptotically 2.38 times larger. We discuss how BC codebooks can be understood in terms of a subset of the binary symplectic group $\\mathrm{S}\\mathrm{p}(2m,\\ 2)$ in 2m dimensions; $\\mathrm{S}\\mathrm{p}(2m,\\ 2)$ is isomorphic to a quotient group of the Clifford group acting on the codewords in N dimensions. The Bruhat decomposition of $\\mathrm{S}\\mathrm{p}(2m,\\ 2)$ can be described in terms of binary subspaces in m dimensions, with ranks ranging from $r=0$ to $r=m$. We provide a unique parameterization of the decomposition. The BCs arise directly from the full-rank part of the decomposition, while BSSCs are a group code arising from the action of the full group with generic r. The rank of the binary subspace is directly related to the number of zeros (sparsity) in the BSSC. We develop a reconstruction algorithm that finds the correct codeword with $O(N\\log^{2}N)$ complexity, and present performance results in an additive white Gaussian noise scenario.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Codebooks of Complex Lines Based on Binary Subspace Chirps\",\"authors\":\"O. Tirkkonen, A. Calderbank\",\"doi\":\"10.1109/ITW44776.2019.8989259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by problems in machine-type wireless communications, we consider codebooks of complex Grassmannian lines in $N = 2^{m}$ dimensions. Binary Chirp (BC) codebooks of prior art are expanded to codebooks of Binary Subspace Chirps (BSSCs), where there is a binary chirp in a subset of the dimensions, while in the remaining dimensions there is a zero. BSSC codebooks have the same minimum distance as BC codebooks, while the cardinality is asymptotically 2.38 times larger. We discuss how BC codebooks can be understood in terms of a subset of the binary symplectic group $\\\\mathrm{S}\\\\mathrm{p}(2m,\\\\ 2)$ in 2m dimensions; $\\\\mathrm{S}\\\\mathrm{p}(2m,\\\\ 2)$ is isomorphic to a quotient group of the Clifford group acting on the codewords in N dimensions. The Bruhat decomposition of $\\\\mathrm{S}\\\\mathrm{p}(2m,\\\\ 2)$ can be described in terms of binary subspaces in m dimensions, with ranks ranging from $r=0$ to $r=m$. We provide a unique parameterization of the decomposition. The BCs arise directly from the full-rank part of the decomposition, while BSSCs are a group code arising from the action of the full group with generic r. The rank of the binary subspace is directly related to the number of zeros (sparsity) in the BSSC. We develop a reconstruction algorithm that finds the correct codeword with $O(N\\\\log^{2}N)$ complexity, and present performance results in an additive white Gaussian noise scenario.\",\"PeriodicalId\":214379,\"journal\":{\"name\":\"2019 IEEE Information Theory Workshop (ITW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW44776.2019.8989259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

受机器型无线通信问题的启发,我们考虑了$N = 2^{m}$维的复杂格拉斯曼线的码本。将现有技术的二进制啁啾(BC)码本扩展为二进制子空间啁啾(bssc)码本,其中在维度的子集中存在二进制啁啾,而在其余维度中存在零。BSSC码本与BC码本具有相同的最小距离,而基数渐近大2.38倍。我们讨论了如何用2m维二进制辛群$\ mathm {S}\ mathm {p}(2m,\ 2)$的子集来理解BC码本;$\mathrm{S}\mathrm{p}(2m,\ 2)$与作用于N维码字的Clifford群的商群同构。$\mathrm{S}\mathrm{p}(2m,\ 2)$的Bruhat分解可以用m维的二进制子空间来描述,其秩从$r=0$到$r=m$。我们提供了分解的唯一参数化。BCs是由分解的满秩部分直接产生的,而BSSC是由泛型r的满群作用产生的群码。二值子空间的秩与BSSC中0的个数(稀疏性)直接相关。我们开发了一种重建算法,该算法以$O(N\log^{2}N)$的复杂度找到正确的码字,并在加性高斯白噪声场景下展示了性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Codebooks of Complex Lines Based on Binary Subspace Chirps
Motivated by problems in machine-type wireless communications, we consider codebooks of complex Grassmannian lines in $N = 2^{m}$ dimensions. Binary Chirp (BC) codebooks of prior art are expanded to codebooks of Binary Subspace Chirps (BSSCs), where there is a binary chirp in a subset of the dimensions, while in the remaining dimensions there is a zero. BSSC codebooks have the same minimum distance as BC codebooks, while the cardinality is asymptotically 2.38 times larger. We discuss how BC codebooks can be understood in terms of a subset of the binary symplectic group $\mathrm{S}\mathrm{p}(2m,\ 2)$ in 2m dimensions; $\mathrm{S}\mathrm{p}(2m,\ 2)$ is isomorphic to a quotient group of the Clifford group acting on the codewords in N dimensions. The Bruhat decomposition of $\mathrm{S}\mathrm{p}(2m,\ 2)$ can be described in terms of binary subspaces in m dimensions, with ranks ranging from $r=0$ to $r=m$. We provide a unique parameterization of the decomposition. The BCs arise directly from the full-rank part of the decomposition, while BSSCs are a group code arising from the action of the full group with generic r. The rank of the binary subspace is directly related to the number of zeros (sparsity) in the BSSC. We develop a reconstruction algorithm that finds the correct codeword with $O(N\log^{2}N)$ complexity, and present performance results in an additive white Gaussian noise scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信