共享任务:利用预训练语言模型进行解释再生

Aditya Girish Pawate, Varun Madhavan, Devansh Chandak
{"title":"共享任务:利用预训练语言模型进行解释再生","authors":"Aditya Girish Pawate, Varun Madhavan, Devansh Chandak","doi":"10.18653/v1/2020.textgraphs-1.12","DOIUrl":null,"url":null,"abstract":"In this work, we describe the system developed by a group of undergraduates from the Indian Institutes of Technology for the Shared Task at TextGraphs-14 on Multi-Hop Inference Explanation Regeneration (Jansen and Ustalov, 2020). The shared task required participants to develop methods to reconstruct gold explanations for elementary science questions from the WorldTreeCorpus (Xie et al., 2020). Although our research was not funded by any organization and all the models were trained on freely available tools like Google Colab, which restricted our computational capabilities, we have managed to achieve noteworthy results, placing ourselves in 4th place with a MAPscore of 0.49021in the evaluation leaderboard and 0.5062 MAPscore on the post-evaluation-phase leaderboard using RoBERTa. We incorporated some of the methods proposed in the previous edition of Textgraphs-13 (Chia et al., 2019), which proved to be very effective, improved upon them, and built a model on top of it using powerful state-of-the-art pre-trained language models like RoBERTa (Liu et al., 2019), BART (Lewis et al., 2020), SciB-ERT (Beltagy et al., 2019) among others. Further optimization of our work can be done with the availability of better computational resources.","PeriodicalId":282839,"journal":{"name":"Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ChiSquareX at TextGraphs 2020 Shared Task: Leveraging Pretrained Language Models for Explanation Regeneration\",\"authors\":\"Aditya Girish Pawate, Varun Madhavan, Devansh Chandak\",\"doi\":\"10.18653/v1/2020.textgraphs-1.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we describe the system developed by a group of undergraduates from the Indian Institutes of Technology for the Shared Task at TextGraphs-14 on Multi-Hop Inference Explanation Regeneration (Jansen and Ustalov, 2020). The shared task required participants to develop methods to reconstruct gold explanations for elementary science questions from the WorldTreeCorpus (Xie et al., 2020). Although our research was not funded by any organization and all the models were trained on freely available tools like Google Colab, which restricted our computational capabilities, we have managed to achieve noteworthy results, placing ourselves in 4th place with a MAPscore of 0.49021in the evaluation leaderboard and 0.5062 MAPscore on the post-evaluation-phase leaderboard using RoBERTa. We incorporated some of the methods proposed in the previous edition of Textgraphs-13 (Chia et al., 2019), which proved to be very effective, improved upon them, and built a model on top of it using powerful state-of-the-art pre-trained language models like RoBERTa (Liu et al., 2019), BART (Lewis et al., 2020), SciB-ERT (Beltagy et al., 2019) among others. Further optimization of our work can be done with the availability of better computational resources.\",\"PeriodicalId\":282839,\"journal\":{\"name\":\"Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.textgraphs-1.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.textgraphs-1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们描述了由印度理工学院的一组本科生为TextGraphs-14上的多跳推理解释再生共享任务开发的系统(Jansen和Ustalov, 2020)。共享任务要求参与者开发方法,从WorldTreeCorpus中重建基础科学问题的黄金解释(Xie et al., 2020)。虽然我们的研究没有得到任何组织的资助,而且所有的模型都是在谷歌Colab等免费工具上训练的,这限制了我们的计算能力,但我们已经取得了显著的成果,在评估排行榜上以0.49021的MAPscore排名第四,在使用RoBERTa的评估后阶段排行榜上以0.5062的MAPscore排名第四。我们结合了之前版本的Textgraphs-13 (Chia等人,2019)中提出的一些方法,这些方法被证明是非常有效的,并对它们进行了改进,并使用强大的最先进的预训练语言模型,如RoBERTa (Liu等人,2019),BART (Lewis等人,2020),SciB-ERT (Beltagy等人,2019)等,在其基础上构建了一个模型。利用更好的计算资源可以进一步优化我们的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ChiSquareX at TextGraphs 2020 Shared Task: Leveraging Pretrained Language Models for Explanation Regeneration
In this work, we describe the system developed by a group of undergraduates from the Indian Institutes of Technology for the Shared Task at TextGraphs-14 on Multi-Hop Inference Explanation Regeneration (Jansen and Ustalov, 2020). The shared task required participants to develop methods to reconstruct gold explanations for elementary science questions from the WorldTreeCorpus (Xie et al., 2020). Although our research was not funded by any organization and all the models were trained on freely available tools like Google Colab, which restricted our computational capabilities, we have managed to achieve noteworthy results, placing ourselves in 4th place with a MAPscore of 0.49021in the evaluation leaderboard and 0.5062 MAPscore on the post-evaluation-phase leaderboard using RoBERTa. We incorporated some of the methods proposed in the previous edition of Textgraphs-13 (Chia et al., 2019), which proved to be very effective, improved upon them, and built a model on top of it using powerful state-of-the-art pre-trained language models like RoBERTa (Liu et al., 2019), BART (Lewis et al., 2020), SciB-ERT (Beltagy et al., 2019) among others. Further optimization of our work can be done with the availability of better computational resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信