高斯过程动态自编码器模型

Jo Takano, T. Omori
{"title":"高斯过程动态自编码器模型","authors":"Jo Takano, T. Omori","doi":"10.1145/3325773.3325784","DOIUrl":null,"url":null,"abstract":"Dimension reduction realize extraction of substantial low dimensional latent structure in high-dimensional data. Due to recent developments in information and measurement technology, it becomes more important to develop dimension reduction algorithms for high dimensional time series data. Gaussian process dynamic model (GPDM) is a method that can obtain low dimensional latent variable representation by using Gaussian process state space model. However, it is difficult to obtain an appropriate latent variable representation of new data point in the GPDM. In this study, we propose a Gaussian Process dynamic autoencoder model (GPDAEM), which consists of Gaussian process state space model and Gaussian process encoder model, in order to estimate appropriate latent variables corresponding to additional new time series data. Experimental results on low dimensional latent variable representation of time series data show that the proposed GPDAEM has better performance than the existing Gaussian process based latent variable models.","PeriodicalId":419017,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gaussian Process Dynamical Autoencoder Model\",\"authors\":\"Jo Takano, T. Omori\",\"doi\":\"10.1145/3325773.3325784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dimension reduction realize extraction of substantial low dimensional latent structure in high-dimensional data. Due to recent developments in information and measurement technology, it becomes more important to develop dimension reduction algorithms for high dimensional time series data. Gaussian process dynamic model (GPDM) is a method that can obtain low dimensional latent variable representation by using Gaussian process state space model. However, it is difficult to obtain an appropriate latent variable representation of new data point in the GPDM. In this study, we propose a Gaussian Process dynamic autoencoder model (GPDAEM), which consists of Gaussian process state space model and Gaussian process encoder model, in order to estimate appropriate latent variables corresponding to additional new time series data. Experimental results on low dimensional latent variable representation of time series data show that the proposed GPDAEM has better performance than the existing Gaussian process based latent variable models.\",\"PeriodicalId\":419017,\"journal\":{\"name\":\"Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3325773.3325784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3325773.3325784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

降维实现了高维数据中大量低维潜在结构的提取。随着信息技术和测量技术的发展,高维时间序列数据的降维算法变得越来越重要。高斯过程动态模型(GPDM)是一种利用高斯过程状态空间模型获得低维潜在变量表示的方法。然而,在GPDM中很难获得一个合适的潜在变量来表示新的数据点。在本研究中,我们提出了一个由高斯过程状态空间模型和高斯过程编码器模型组成的高斯过程动态自编码器模型(GPDAEM),以估计额外的新时间序列数据对应的合适的潜在变量。对时间序列数据进行低维隐变量表示的实验结果表明,该算法比现有的基于高斯过程的隐变量模型具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian Process Dynamical Autoencoder Model
Dimension reduction realize extraction of substantial low dimensional latent structure in high-dimensional data. Due to recent developments in information and measurement technology, it becomes more important to develop dimension reduction algorithms for high dimensional time series data. Gaussian process dynamic model (GPDM) is a method that can obtain low dimensional latent variable representation by using Gaussian process state space model. However, it is difficult to obtain an appropriate latent variable representation of new data point in the GPDM. In this study, we propose a Gaussian Process dynamic autoencoder model (GPDAEM), which consists of Gaussian process state space model and Gaussian process encoder model, in order to estimate appropriate latent variables corresponding to additional new time series data. Experimental results on low dimensional latent variable representation of time series data show that the proposed GPDAEM has better performance than the existing Gaussian process based latent variable models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信