Vrushali Atul Surve, Pramod Pathak, Mohammed Hasanuzzaman, Rejwanul Haque, Paul Stynes
{"title":"基于图像的电子商务产品分类迁移学习框架","authors":"Vrushali Atul Surve, Pramod Pathak, Mohammed Hasanuzzaman, Rejwanul Haque, Paul Stynes","doi":"10.1145/3556677.3556689","DOIUrl":null,"url":null,"abstract":"Classification of e-commerce products involves identifying the products and placing those products into the correct category. For example, men’s Nike Air Max will be in the men’s category shoes on an e-Commerce platform. Identifying the correct classification of a product from hundreds of categories is time-consuming for businesses. This research proposes an Image-based Transfer Learning Framework to classify the images into the correct category in the shortest time. The framework combines Image-based algorithms with Transfer Learning. This research compares the time to predict the category and accuracy of traditional CNN and transfer learning models such as VGG19, InceptionV3, ResNet50, and MobileNet. A visual classifier is trained CNN and transfer learning models such as VGG19, InceptionV3, ResNet50, and MobileNet. The models are trained on an e-commerce product dataset that combines the ImageNet dataset with pre-trained weights. The dataset consists of 15000 images scraped from the web. Results demonstrate that Inception V3 outperforms all other models based on a TIMING of 0.10 seconds and an accuracy of 85%.","PeriodicalId":350340,"journal":{"name":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Image-based Transfer Learning Framework for Classification of E-Commerce Products\",\"authors\":\"Vrushali Atul Surve, Pramod Pathak, Mohammed Hasanuzzaman, Rejwanul Haque, Paul Stynes\",\"doi\":\"10.1145/3556677.3556689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of e-commerce products involves identifying the products and placing those products into the correct category. For example, men’s Nike Air Max will be in the men’s category shoes on an e-Commerce platform. Identifying the correct classification of a product from hundreds of categories is time-consuming for businesses. This research proposes an Image-based Transfer Learning Framework to classify the images into the correct category in the shortest time. The framework combines Image-based algorithms with Transfer Learning. This research compares the time to predict the category and accuracy of traditional CNN and transfer learning models such as VGG19, InceptionV3, ResNet50, and MobileNet. A visual classifier is trained CNN and transfer learning models such as VGG19, InceptionV3, ResNet50, and MobileNet. The models are trained on an e-commerce product dataset that combines the ImageNet dataset with pre-trained weights. The dataset consists of 15000 images scraped from the web. Results demonstrate that Inception V3 outperforms all other models based on a TIMING of 0.10 seconds and an accuracy of 85%.\",\"PeriodicalId\":350340,\"journal\":{\"name\":\"Proceedings of the 2022 6th International Conference on Deep Learning Technologies\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 6th International Conference on Deep Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3556677.3556689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3556677.3556689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Image-based Transfer Learning Framework for Classification of E-Commerce Products
Classification of e-commerce products involves identifying the products and placing those products into the correct category. For example, men’s Nike Air Max will be in the men’s category shoes on an e-Commerce platform. Identifying the correct classification of a product from hundreds of categories is time-consuming for businesses. This research proposes an Image-based Transfer Learning Framework to classify the images into the correct category in the shortest time. The framework combines Image-based algorithms with Transfer Learning. This research compares the time to predict the category and accuracy of traditional CNN and transfer learning models such as VGG19, InceptionV3, ResNet50, and MobileNet. A visual classifier is trained CNN and transfer learning models such as VGG19, InceptionV3, ResNet50, and MobileNet. The models are trained on an e-commerce product dataset that combines the ImageNet dataset with pre-trained weights. The dataset consists of 15000 images scraped from the web. Results demonstrate that Inception V3 outperforms all other models based on a TIMING of 0.10 seconds and an accuracy of 85%.