{"title":"基于引力搜索算法的乳房x线影像肿瘤特征加权检测","authors":"Fatemeh Shirazi, E. Rashedi","doi":"10.1109/ICCKE.2016.7802158","DOIUrl":null,"url":null,"abstract":"Optimization methods have been widely used in image processing and computer vision. In this paper, k-nearest neighbor (KNN) and real-valued gravitational search algorithm (RGSA) are used to detect the breast cancer tumors in mammography images. GSA is used as a tool for optimization of the features weighting (FW) and tuning the classifier. FW-KNN based on GSA is employed to enhance the K-NN classification accuracy. The weighted features and the tuned K-NN classifier are utilized for detecting tumors. The obtained results show good efficiency of GSA-based FW-KNN classification for breast cancer tumor detection.","PeriodicalId":205768,"journal":{"name":"2016 6th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Feature weighting for cancer tumor detection in mammography images using gravitational search algorithm\",\"authors\":\"Fatemeh Shirazi, E. Rashedi\",\"doi\":\"10.1109/ICCKE.2016.7802158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimization methods have been widely used in image processing and computer vision. In this paper, k-nearest neighbor (KNN) and real-valued gravitational search algorithm (RGSA) are used to detect the breast cancer tumors in mammography images. GSA is used as a tool for optimization of the features weighting (FW) and tuning the classifier. FW-KNN based on GSA is employed to enhance the K-NN classification accuracy. The weighted features and the tuned K-NN classifier are utilized for detecting tumors. The obtained results show good efficiency of GSA-based FW-KNN classification for breast cancer tumor detection.\",\"PeriodicalId\":205768,\"journal\":{\"name\":\"2016 6th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCKE.2016.7802158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE.2016.7802158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature weighting for cancer tumor detection in mammography images using gravitational search algorithm
Optimization methods have been widely used in image processing and computer vision. In this paper, k-nearest neighbor (KNN) and real-valued gravitational search algorithm (RGSA) are used to detect the breast cancer tumors in mammography images. GSA is used as a tool for optimization of the features weighting (FW) and tuning the classifier. FW-KNN based on GSA is employed to enhance the K-NN classification accuracy. The weighted features and the tuned K-NN classifier are utilized for detecting tumors. The obtained results show good efficiency of GSA-based FW-KNN classification for breast cancer tumor detection.