基于引力搜索算法的乳房x线影像肿瘤特征加权检测

Fatemeh Shirazi, E. Rashedi
{"title":"基于引力搜索算法的乳房x线影像肿瘤特征加权检测","authors":"Fatemeh Shirazi, E. Rashedi","doi":"10.1109/ICCKE.2016.7802158","DOIUrl":null,"url":null,"abstract":"Optimization methods have been widely used in image processing and computer vision. In this paper, k-nearest neighbor (KNN) and real-valued gravitational search algorithm (RGSA) are used to detect the breast cancer tumors in mammography images. GSA is used as a tool for optimization of the features weighting (FW) and tuning the classifier. FW-KNN based on GSA is employed to enhance the K-NN classification accuracy. The weighted features and the tuned K-NN classifier are utilized for detecting tumors. The obtained results show good efficiency of GSA-based FW-KNN classification for breast cancer tumor detection.","PeriodicalId":205768,"journal":{"name":"2016 6th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Feature weighting for cancer tumor detection in mammography images using gravitational search algorithm\",\"authors\":\"Fatemeh Shirazi, E. Rashedi\",\"doi\":\"10.1109/ICCKE.2016.7802158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimization methods have been widely used in image processing and computer vision. In this paper, k-nearest neighbor (KNN) and real-valued gravitational search algorithm (RGSA) are used to detect the breast cancer tumors in mammography images. GSA is used as a tool for optimization of the features weighting (FW) and tuning the classifier. FW-KNN based on GSA is employed to enhance the K-NN classification accuracy. The weighted features and the tuned K-NN classifier are utilized for detecting tumors. The obtained results show good efficiency of GSA-based FW-KNN classification for breast cancer tumor detection.\",\"PeriodicalId\":205768,\"journal\":{\"name\":\"2016 6th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCKE.2016.7802158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE.2016.7802158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

优化方法在图像处理和计算机视觉中有着广泛的应用。本文采用k近邻算法(KNN)和实值引力搜索算法(RGSA)对乳房x线摄影图像中的乳腺癌肿瘤进行检测。GSA被用作特征加权(FW)优化和分类器调优的工具。采用基于GSA的FW-KNN来提高K-NN的分类精度。利用加权特征和调整后的K-NN分类器进行肿瘤检测。结果表明,基于gsa的FW-KNN分类在乳腺癌肿瘤检测中的效率较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature weighting for cancer tumor detection in mammography images using gravitational search algorithm
Optimization methods have been widely used in image processing and computer vision. In this paper, k-nearest neighbor (KNN) and real-valued gravitational search algorithm (RGSA) are used to detect the breast cancer tumors in mammography images. GSA is used as a tool for optimization of the features weighting (FW) and tuning the classifier. FW-KNN based on GSA is employed to enhance the K-NN classification accuracy. The weighted features and the tuned K-NN classifier are utilized for detecting tumors. The obtained results show good efficiency of GSA-based FW-KNN classification for breast cancer tumor detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信