一般Garch-in-Mean模型的期权估值公式

Z. Qian, Xingcheng Xu
{"title":"一般Garch-in-Mean模型的期权估值公式","authors":"Z. Qian, Xingcheng Xu","doi":"10.2139/ssrn.3185994","DOIUrl":null,"url":null,"abstract":"We derive option pricing formulas based on general GARCH-M models by using risk-neutral arguments. These formulas are beautiful in nature and realistic for applications. We propose a parameter estimation procedure and employ Monte Carlo method to evaluate the price. Demonstrations of these formulas applying to S&P 500 index options are shown. Empirical evidence suggests that both in U.S. stock market and Chinese financial market the performances of these theoretical pricing formulas are better than the results via Black-Scholes' pricing formula with constant volatility.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Option Valuation Formula for General Garch-in-Mean Models\",\"authors\":\"Z. Qian, Xingcheng Xu\",\"doi\":\"10.2139/ssrn.3185994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive option pricing formulas based on general GARCH-M models by using risk-neutral arguments. These formulas are beautiful in nature and realistic for applications. We propose a parameter estimation procedure and employ Monte Carlo method to evaluate the price. Demonstrations of these formulas applying to S&P 500 index options are shown. Empirical evidence suggests that both in U.S. stock market and Chinese financial market the performances of these theoretical pricing formulas are better than the results via Black-Scholes' pricing formula with constant volatility.\",\"PeriodicalId\":260073,\"journal\":{\"name\":\"Mathematics eJournal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3185994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3185994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用风险中性参数,推导了基于一般GARCH-M模型的期权定价公式。这些公式在本质上是美丽的,在应用上是现实的。提出了一种参数估计方法,并采用蒙特卡罗方法对价格进行了估计。这些公式应用于标准普尔500指数期权的演示。实证表明,无论是在美国股票市场还是在中国金融市场,这些理论定价公式的表现都优于Black-Scholes定波动定价公式的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Option Valuation Formula for General Garch-in-Mean Models
We derive option pricing formulas based on general GARCH-M models by using risk-neutral arguments. These formulas are beautiful in nature and realistic for applications. We propose a parameter estimation procedure and employ Monte Carlo method to evaluate the price. Demonstrations of these formulas applying to S&P 500 index options are shown. Empirical evidence suggests that both in U.S. stock market and Chinese financial market the performances of these theoretical pricing formulas are better than the results via Black-Scholes' pricing formula with constant volatility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信