层次SVM-kNN对音乐情感的分类

Qhansa Di'ayu Putri Bayu, S. Suyanto, A. Arifianto
{"title":"层次SVM-kNN对音乐情感的分类","authors":"Qhansa Di'ayu Putri Bayu, S. Suyanto, A. Arifianto","doi":"10.1109/ISRITI48646.2019.9034651","DOIUrl":null,"url":null,"abstract":"The emotional component in a music classification is more powerful than the others. This research addresses a music emotion classification. A hierarchical classification system using a Support Vector Machine (SVM) and a k-Nearest Neighbors (kNN) is proposed. The experiments using 120 pop-rock music data with the emotional label based on the AllMusicGuide website split into four classes: \"Happy\", \"Angry\", \"Sad\", and \"Relax\" show that the proposed hierarchical model is capable of increasing the absolute performance of music emotion classification by 19.33% in the SVM (Kernel: RBF) and 13.33% in the kNN (k = 5). The best combination three-level classifier, the arrangement of the three best classifiers for each level in hierarchical music emotion classification is by using the SVM (Kernel: Linear) classifier at Level 1, then kNN (k = 3) at Level 2.1 and Level 2.2.","PeriodicalId":367363,"journal":{"name":"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hierarchical SVM-kNN to Classify Music Emotion\",\"authors\":\"Qhansa Di'ayu Putri Bayu, S. Suyanto, A. Arifianto\",\"doi\":\"10.1109/ISRITI48646.2019.9034651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emotional component in a music classification is more powerful than the others. This research addresses a music emotion classification. A hierarchical classification system using a Support Vector Machine (SVM) and a k-Nearest Neighbors (kNN) is proposed. The experiments using 120 pop-rock music data with the emotional label based on the AllMusicGuide website split into four classes: \\\"Happy\\\", \\\"Angry\\\", \\\"Sad\\\", and \\\"Relax\\\" show that the proposed hierarchical model is capable of increasing the absolute performance of music emotion classification by 19.33% in the SVM (Kernel: RBF) and 13.33% in the kNN (k = 5). The best combination three-level classifier, the arrangement of the three best classifiers for each level in hierarchical music emotion classification is by using the SVM (Kernel: Linear) classifier at Level 1, then kNN (k = 3) at Level 2.1 and Level 2.2.\",\"PeriodicalId\":367363,\"journal\":{\"name\":\"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISRITI48646.2019.9034651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRITI48646.2019.9034651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

音乐分类中的情感成分比其他成分更强大。本研究涉及音乐情感分类。提出了一种基于支持向量机(SVM)和k近邻(kNN)的分层分类系统。使用基于AllMusicGuide网站的120首流行摇滚音乐数据,将其情感标签分为“快乐”、“愤怒”、“悲伤”和“放松”四类,实验表明,所提出的分层模型能够将支持向量机的音乐情感分类绝对性能提高19.33% (Kernel:对于三层分类器的最佳组合,在层次音乐情感分类中,每层三个最佳分类器的排列方式是在层次1上使用SVM (Kernel: Linear)分类器,然后在层次2.1和层次2.2上使用kNN (k = 3)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical SVM-kNN to Classify Music Emotion
The emotional component in a music classification is more powerful than the others. This research addresses a music emotion classification. A hierarchical classification system using a Support Vector Machine (SVM) and a k-Nearest Neighbors (kNN) is proposed. The experiments using 120 pop-rock music data with the emotional label based on the AllMusicGuide website split into four classes: "Happy", "Angry", "Sad", and "Relax" show that the proposed hierarchical model is capable of increasing the absolute performance of music emotion classification by 19.33% in the SVM (Kernel: RBF) and 13.33% in the kNN (k = 5). The best combination three-level classifier, the arrangement of the three best classifiers for each level in hierarchical music emotion classification is by using the SVM (Kernel: Linear) classifier at Level 1, then kNN (k = 3) at Level 2.1 and Level 2.2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信