{"title":"ASTRO:自主、传感和无线网络无人机","authors":"Riccardo Petrolo, Yingyan Lin, E. Knightly","doi":"10.1145/3213526.3213527","DOIUrl":null,"url":null,"abstract":"We propose ASTRO, a drone network that realizes three key features: (i) networked drones that coordinate in autonomous flight via software defined radios, (ii) off-grid tetherless flight without requiring a ground control station or air-to-ground network, and (iii) on-board machine learning missions based on on-drone sensor data shared among drones. We implement ASTRO and present a suite of proof-of-concept experiments based on a mission in which a network of ASTRO drones must find and track a mobile spectrum cheater.","PeriodicalId":237910,"journal":{"name":"Proceedings of the 4th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications","volume":"92 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"ASTRO: Autonomous, Sensing, and Tetherless netwoRked drOnes\",\"authors\":\"Riccardo Petrolo, Yingyan Lin, E. Knightly\",\"doi\":\"10.1145/3213526.3213527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose ASTRO, a drone network that realizes three key features: (i) networked drones that coordinate in autonomous flight via software defined radios, (ii) off-grid tetherless flight without requiring a ground control station or air-to-ground network, and (iii) on-board machine learning missions based on on-drone sensor data shared among drones. We implement ASTRO and present a suite of proof-of-concept experiments based on a mission in which a network of ASTRO drones must find and track a mobile spectrum cheater.\",\"PeriodicalId\":237910,\"journal\":{\"name\":\"Proceedings of the 4th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications\",\"volume\":\"92 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3213526.3213527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3213526.3213527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ASTRO: Autonomous, Sensing, and Tetherless netwoRked drOnes
We propose ASTRO, a drone network that realizes three key features: (i) networked drones that coordinate in autonomous flight via software defined radios, (ii) off-grid tetherless flight without requiring a ground control station or air-to-ground network, and (iii) on-board machine learning missions based on on-drone sensor data shared among drones. We implement ASTRO and present a suite of proof-of-concept experiments based on a mission in which a network of ASTRO drones must find and track a mobile spectrum cheater.