{"title":"卷积神经网络的多视图解释","authors":"H. Khastavaneh, H. Ebrahimpour-Komleh","doi":"10.1109/KBEI.2019.8734980","DOIUrl":null,"url":null,"abstract":"In this study we consider multi-view capabilities of convolutional neural networks as one of the best methods of representation learning. Multi-view learning as a machine learning technique deals with the task of learning from multiple distinct views or multiple distinct feature sets. Moreover, multi-view feature learning attempts to abstract and summarize distinct feature sets for further machine learning and pattern recognition tasks. In contrast to traditional multi-view learning methods, convolutional neural networks are able to generate representations from unstructured raw data; these features are very essential for real world applications. It is concluded that CNNs are inherently multi-view representation learning methods able to handle both natural and artificial views.","PeriodicalId":339990,"journal":{"name":"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Multi-view Interpretation of Convolutional Neural Networks\",\"authors\":\"H. Khastavaneh, H. Ebrahimpour-Komleh\",\"doi\":\"10.1109/KBEI.2019.8734980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study we consider multi-view capabilities of convolutional neural networks as one of the best methods of representation learning. Multi-view learning as a machine learning technique deals with the task of learning from multiple distinct views or multiple distinct feature sets. Moreover, multi-view feature learning attempts to abstract and summarize distinct feature sets for further machine learning and pattern recognition tasks. In contrast to traditional multi-view learning methods, convolutional neural networks are able to generate representations from unstructured raw data; these features are very essential for real world applications. It is concluded that CNNs are inherently multi-view representation learning methods able to handle both natural and artificial views.\",\"PeriodicalId\":339990,\"journal\":{\"name\":\"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)\",\"volume\":\"237 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KBEI.2019.8734980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KBEI.2019.8734980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Multi-view Interpretation of Convolutional Neural Networks
In this study we consider multi-view capabilities of convolutional neural networks as one of the best methods of representation learning. Multi-view learning as a machine learning technique deals with the task of learning from multiple distinct views or multiple distinct feature sets. Moreover, multi-view feature learning attempts to abstract and summarize distinct feature sets for further machine learning and pattern recognition tasks. In contrast to traditional multi-view learning methods, convolutional neural networks are able to generate representations from unstructured raw data; these features are very essential for real world applications. It is concluded that CNNs are inherently multi-view representation learning methods able to handle both natural and artificial views.