三面盖驱动腔体仿真

A. Kamel, Eman H. Haraz, S. Hanna
{"title":"三面盖驱动腔体仿真","authors":"A. Kamel, Eman H. Haraz, S. Hanna","doi":"10.7763/ijmo.2020.v10.749","DOIUrl":null,"url":null,"abstract":"In this paper, an incompressible, two-dimensional (2D), time-dependent, and laminar Newtonian fluid flow in a square cavity is simulated in order to investigate vortex dynamics in cavities. Navier-Stokes equations in vorticity-stream function formulation are solved numerically using the finite difference method (FDM) and alternating direction implicit (ADI) technique as they are computationally effective. Two original, distinguished, and unexplored cases of the three-sided lid-driven cavity have been investigated. In case (1) the upper and lower walls are translated to the right whereas the left wall is translated upward and the right wall remains stationary. Furthermore, in case (2) the upper wall is translated to the right but the lower wall is translated to the left whereas the left wall is translated downward and the right wall remains stationary. Moreover, the speed magnitude is unity for all moving walls. However, a MATLAB code is developed, used, and validated by studying the one-sided lid-driven cavity. The results were in a very good agreement. Besides, stream function and vorticity values in addition to the location of primary and secondary vortices’ centers inside the square cavity have been revealed at low and intermediate Reynolds numbers, typically (Re=100 to 2000). Moreover, as Reynolds number increases, more secondary vortices are generated near the cavity corners and the main primary vortex approaches the cavity center.","PeriodicalId":134487,"journal":{"name":"International Journal of Modeling and Optimization","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Three-Sided Lid-Driven Cavity\",\"authors\":\"A. Kamel, Eman H. Haraz, S. Hanna\",\"doi\":\"10.7763/ijmo.2020.v10.749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an incompressible, two-dimensional (2D), time-dependent, and laminar Newtonian fluid flow in a square cavity is simulated in order to investigate vortex dynamics in cavities. Navier-Stokes equations in vorticity-stream function formulation are solved numerically using the finite difference method (FDM) and alternating direction implicit (ADI) technique as they are computationally effective. Two original, distinguished, and unexplored cases of the three-sided lid-driven cavity have been investigated. In case (1) the upper and lower walls are translated to the right whereas the left wall is translated upward and the right wall remains stationary. Furthermore, in case (2) the upper wall is translated to the right but the lower wall is translated to the left whereas the left wall is translated downward and the right wall remains stationary. Moreover, the speed magnitude is unity for all moving walls. However, a MATLAB code is developed, used, and validated by studying the one-sided lid-driven cavity. The results were in a very good agreement. Besides, stream function and vorticity values in addition to the location of primary and secondary vortices’ centers inside the square cavity have been revealed at low and intermediate Reynolds numbers, typically (Re=100 to 2000). Moreover, as Reynolds number increases, more secondary vortices are generated near the cavity corners and the main primary vortex approaches the cavity center.\",\"PeriodicalId\":134487,\"journal\":{\"name\":\"International Journal of Modeling and Optimization\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modeling and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7763/ijmo.2020.v10.749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modeling and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7763/ijmo.2020.v10.749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文模拟了一个不可压缩的、二维的、随时间变化的层流牛顿流体在方形腔内的流动,以研究腔内的涡旋动力学。利用有限差分法(FDM)和交替方向隐式(ADI)技术对涡流函数表达式中的Navier-Stokes方程进行了数值求解。两个原始的,杰出的,和未探索的情况下,三面盖驱动腔进行了调查。在情形(1)中,上、下壁向右平移,而左壁向上平移,右壁保持静止。此外,在情形(2)中,上壁向右平移但下壁向左平移,而左壁向下平移且右壁保持静止。此外,所有运动壁面的速度大小是统一的。但是,通过研究单侧盖驱动腔体,开发、使用并验证了MATLAB代码。结果非常一致。此外,在低雷诺数和中雷诺数条件下(Re=100 ~ 2000),流函数和涡量值以及主涡和次涡中心在方形腔内的位置也得到了揭示。此外,随着雷诺数的增加,在腔角附近产生更多的二次涡,主一次涡向腔中心靠近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of Three-Sided Lid-Driven Cavity
In this paper, an incompressible, two-dimensional (2D), time-dependent, and laminar Newtonian fluid flow in a square cavity is simulated in order to investigate vortex dynamics in cavities. Navier-Stokes equations in vorticity-stream function formulation are solved numerically using the finite difference method (FDM) and alternating direction implicit (ADI) technique as they are computationally effective. Two original, distinguished, and unexplored cases of the three-sided lid-driven cavity have been investigated. In case (1) the upper and lower walls are translated to the right whereas the left wall is translated upward and the right wall remains stationary. Furthermore, in case (2) the upper wall is translated to the right but the lower wall is translated to the left whereas the left wall is translated downward and the right wall remains stationary. Moreover, the speed magnitude is unity for all moving walls. However, a MATLAB code is developed, used, and validated by studying the one-sided lid-driven cavity. The results were in a very good agreement. Besides, stream function and vorticity values in addition to the location of primary and secondary vortices’ centers inside the square cavity have been revealed at low and intermediate Reynolds numbers, typically (Re=100 to 2000). Moreover, as Reynolds number increases, more secondary vortices are generated near the cavity corners and the main primary vortex approaches the cavity center.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信