用于模式分类和规则提取的神经模糊网络

G. Conde, Patrícia G. Ramos, G. C. Vasconcelos
{"title":"用于模式分类和规则提取的神经模糊网络","authors":"G. Conde, Patrícia G. Ramos, G. C. Vasconcelos","doi":"10.1109/SBRN.2000.889761","DOIUrl":null,"url":null,"abstract":"Summary form only given. An experimental evaluation of the neurofuzzy models NEFCLASS and FuNN is conducted in real world pattern recognition applications. The models are investigated with respect to classification performance and the number of rules generated and compared to the traditional MLP network trained with backpropagation. The models NEFCLASS and FuNN are examined in benchmarking problems from the Proben1 database and in a large-scale credit card screening problem. A comparison is established with an MLP network and the results obtained show some potential advantages of the neuro-fuzzy classifiers over the MLP particularly with respect to the ability of the neuro-fuzzy models to generate a knowledge base of rules.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Neuro-fuzzy networks for pattern classification and rule extraction\",\"authors\":\"G. Conde, Patrícia G. Ramos, G. C. Vasconcelos\",\"doi\":\"10.1109/SBRN.2000.889761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. An experimental evaluation of the neurofuzzy models NEFCLASS and FuNN is conducted in real world pattern recognition applications. The models are investigated with respect to classification performance and the number of rules generated and compared to the traditional MLP network trained with backpropagation. The models NEFCLASS and FuNN are examined in benchmarking problems from the Proben1 database and in a large-scale credit card screening problem. A comparison is established with an MLP network and the results obtained show some potential advantages of the neuro-fuzzy classifiers over the MLP particularly with respect to the ability of the neuro-fuzzy models to generate a knowledge base of rules.\",\"PeriodicalId\":448461,\"journal\":{\"name\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2000.889761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

只提供摘要形式。在现实世界的模式识别应用中对神经模糊模型NEFCLASS和FuNN进行了实验评估。研究了模型的分类性能和生成规则的数量,并与传统的反向传播训练的MLP网络进行了比较。模型NEFCLASS和FuNN在Proben1数据库的基准问题和大规模信用卡筛选问题中进行了检验。与MLP网络进行了比较,结果表明神经模糊分类器比MLP网络具有一些潜在的优势,特别是在神经模糊模型生成规则知识库的能力方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuro-fuzzy networks for pattern classification and rule extraction
Summary form only given. An experimental evaluation of the neurofuzzy models NEFCLASS and FuNN is conducted in real world pattern recognition applications. The models are investigated with respect to classification performance and the number of rules generated and compared to the traditional MLP network trained with backpropagation. The models NEFCLASS and FuNN are examined in benchmarking problems from the Proben1 database and in a large-scale credit card screening problem. A comparison is established with an MLP network and the results obtained show some potential advantages of the neuro-fuzzy classifiers over the MLP particularly with respect to the ability of the neuro-fuzzy models to generate a knowledge base of rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信