从MSE到Correntropy,一个友好的调查

A. Martins
{"title":"从MSE到Correntropy,一个友好的调查","authors":"A. Martins","doi":"10.21528/lnlm-vol19-no1-art5","DOIUrl":null,"url":null,"abstract":"Correntropy is a metric that has been widely used in place of the root mean square error in problems where it is intended to minimize the divergence between data and models. In particular, machine learning is currently in focus, where increasingly complex models require increasingly statistically heterogeneous data. In this article we will give an introduction to correntropy in a friendly and intuitive way. Contrary to purely technical summaries, we will try to balance a precisely technical language with a freer and more informal text. We will present the history of how correntropy came to be developed, in order to lead the reader to a coherent temporal sequence that will facilitate the precise understanding of this new metric.","PeriodicalId":386768,"journal":{"name":"Learning and Nonlinear Models","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From MSE to Correntropy, a friendly survey\",\"authors\":\"A. Martins\",\"doi\":\"10.21528/lnlm-vol19-no1-art5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correntropy is a metric that has been widely used in place of the root mean square error in problems where it is intended to minimize the divergence between data and models. In particular, machine learning is currently in focus, where increasingly complex models require increasingly statistically heterogeneous data. In this article we will give an introduction to correntropy in a friendly and intuitive way. Contrary to purely technical summaries, we will try to balance a precisely technical language with a freer and more informal text. We will present the history of how correntropy came to be developed, in order to lead the reader to a coherent temporal sequence that will facilitate the precise understanding of this new metric.\",\"PeriodicalId\":386768,\"journal\":{\"name\":\"Learning and Nonlinear Models\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Learning and Nonlinear Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21528/lnlm-vol19-no1-art5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Nonlinear Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/lnlm-vol19-no1-art5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相关系数是一种度量,在问题中被广泛使用来代替均方根误差,它的目的是最小化数据和模型之间的差异。特别是,机器学习是目前的焦点,其中越来越复杂的模型需要越来越多的统计异构数据。在本文中,我们将以一种友好和直观的方式介绍熵。与纯粹的技术摘要相反,我们将尝试用更自由和更非正式的文本来平衡精确的技术语言。我们将介绍熵是如何发展的历史,以引导读者到一个连贯的时间序列,这将有助于准确理解这个新的度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From MSE to Correntropy, a friendly survey
Correntropy is a metric that has been widely used in place of the root mean square error in problems where it is intended to minimize the divergence between data and models. In particular, machine learning is currently in focus, where increasingly complex models require increasingly statistically heterogeneous data. In this article we will give an introduction to correntropy in a friendly and intuitive way. Contrary to purely technical summaries, we will try to balance a precisely technical language with a freer and more informal text. We will present the history of how correntropy came to be developed, in order to lead the reader to a coherent temporal sequence that will facilitate the precise understanding of this new metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信