V. S, Abinash Dash, Praveena Krishna P. S., A. M, J. S.
{"title":"电动自行车电池与超级电容器无刷直流驱动混合控制算法","authors":"V. S, Abinash Dash, Praveena Krishna P. S., A. M, J. S.","doi":"10.1109/PECCON55017.2022.9851060","DOIUrl":null,"url":null,"abstract":"The world is observing a tremendous transition from internal combustion engine (ICE) vehicles to EVs lately. In the urban commute sector, two-wheelers play an important role as it reduces traffic congestion and saves time. With the adoption of two-wheeler E-bikes, the emission, noise and cost of maintenance are reduced. To enable higher efficiency and range of E-bike drive systems, a hybrid power source is essential. In this work, a novel algorithm is designed and developed for a Hybrid Energy Storage System (HESS) comprising of battery and supercapacitor (SC) for BLDC drive in E-bike. The control algorithm design involves motoring and regenerative braking operation while incorporating five different riding modes using the MATLAB/Simulink platform. The efficiency, speed and torque tracking of the system are considered for variable loading of the motor to verify the efficacy of the proposed algorithm for HESS employed to E-bikes.","PeriodicalId":129147,"journal":{"name":"2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Control Algorithm for BLDC Drive Involving Battery and Supercapacitor in E-bikes\",\"authors\":\"V. S, Abinash Dash, Praveena Krishna P. S., A. M, J. S.\",\"doi\":\"10.1109/PECCON55017.2022.9851060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The world is observing a tremendous transition from internal combustion engine (ICE) vehicles to EVs lately. In the urban commute sector, two-wheelers play an important role as it reduces traffic congestion and saves time. With the adoption of two-wheeler E-bikes, the emission, noise and cost of maintenance are reduced. To enable higher efficiency and range of E-bike drive systems, a hybrid power source is essential. In this work, a novel algorithm is designed and developed for a Hybrid Energy Storage System (HESS) comprising of battery and supercapacitor (SC) for BLDC drive in E-bike. The control algorithm design involves motoring and regenerative braking operation while incorporating five different riding modes using the MATLAB/Simulink platform. The efficiency, speed and torque tracking of the system are considered for variable loading of the motor to verify the efficacy of the proposed algorithm for HESS employed to E-bikes.\",\"PeriodicalId\":129147,\"journal\":{\"name\":\"2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PECCON55017.2022.9851060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECCON55017.2022.9851060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid Control Algorithm for BLDC Drive Involving Battery and Supercapacitor in E-bikes
The world is observing a tremendous transition from internal combustion engine (ICE) vehicles to EVs lately. In the urban commute sector, two-wheelers play an important role as it reduces traffic congestion and saves time. With the adoption of two-wheeler E-bikes, the emission, noise and cost of maintenance are reduced. To enable higher efficiency and range of E-bike drive systems, a hybrid power source is essential. In this work, a novel algorithm is designed and developed for a Hybrid Energy Storage System (HESS) comprising of battery and supercapacitor (SC) for BLDC drive in E-bike. The control algorithm design involves motoring and regenerative braking operation while incorporating five different riding modes using the MATLAB/Simulink platform. The efficiency, speed and torque tracking of the system are considered for variable loading of the motor to verify the efficacy of the proposed algorithm for HESS employed to E-bikes.