关于网格的一些组合性质

H. Sarbazi-Azad
{"title":"关于网格的一些组合性质","authors":"H. Sarbazi-Azad","doi":"10.1109/ISPAN.2004.1300468","DOIUrl":null,"url":null,"abstract":"The mesh structure has been used as the underlying topology for many practical multicomputers, and has been extensively studied in the past. In this paper, we investigate some topological properties of meshes. In particular, we study the problem of finding the number of nodes located at a given distance from a given node (surface area) and the number of nodes located within a given distance from a given node (volume), and have derived some expressions calculating these numbers.","PeriodicalId":198404,"journal":{"name":"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On some combinatorial properties of meshes\",\"authors\":\"H. Sarbazi-Azad\",\"doi\":\"10.1109/ISPAN.2004.1300468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mesh structure has been used as the underlying topology for many practical multicomputers, and has been extensively studied in the past. In this paper, we investigate some topological properties of meshes. In particular, we study the problem of finding the number of nodes located at a given distance from a given node (surface area) and the number of nodes located within a given distance from a given node (volume), and have derived some expressions calculating these numbers.\",\"PeriodicalId\":198404,\"journal\":{\"name\":\"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPAN.2004.1300468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPAN.2004.1300468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

网格结构已被用作许多实际多计算机的底层拓扑结构,并在过去得到了广泛的研究。本文研究了网格的一些拓扑性质。特别地,我们研究了在给定节点(表面积)的给定距离上找到节点的数目和在给定节点(体积)的给定距离内找到节点的数目的问题,并推导了计算这些数目的表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some combinatorial properties of meshes
The mesh structure has been used as the underlying topology for many practical multicomputers, and has been extensively studied in the past. In this paper, we investigate some topological properties of meshes. In particular, we study the problem of finding the number of nodes located at a given distance from a given node (surface area) and the number of nodes located within a given distance from a given node (volume), and have derived some expressions calculating these numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信