{"title":"量化重布线:稀疏深度神经网络的硬件感知训练","authors":"Horst Petschenig, R. Legenstein","doi":"10.1088/2634-4386/accd8f","DOIUrl":null,"url":null,"abstract":"Mixed-signal and fully digital neuromorphic systems have been of significant interest for deploying spiking neural networks in an energy-efficient manner. However, many of these systems impose constraints in terms of fan-in, memory, or synaptic weight precision that have to be considered during network design and training. In this paper, we present quantized rewiring (Q-rewiring), an algorithm that can train both spiking and non-spiking neural networks while meeting hardware constraints during the entire training process. To demonstrate our approach, we train both feedforward and recurrent neural networks with a combined fan-in/weight precision limit, a constraint that is, for example, present in the DYNAP-SE mixed-signal analog/digital neuromorphic processor. Q-rewiring simultaneously performs quantization and rewiring of synapses and synaptic weights through gradient descent updates and projecting the trainable parameters to a constraint-compliant region. Using our algorithm, we find trade-offs between the number of incoming connections to neurons and network performance for a number of common benchmark datasets.","PeriodicalId":198030,"journal":{"name":"Neuromorphic Computing and Engineering","volume":"102 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantized rewiring: hardware-aware training of sparse deep neural networks\",\"authors\":\"Horst Petschenig, R. Legenstein\",\"doi\":\"10.1088/2634-4386/accd8f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixed-signal and fully digital neuromorphic systems have been of significant interest for deploying spiking neural networks in an energy-efficient manner. However, many of these systems impose constraints in terms of fan-in, memory, or synaptic weight precision that have to be considered during network design and training. In this paper, we present quantized rewiring (Q-rewiring), an algorithm that can train both spiking and non-spiking neural networks while meeting hardware constraints during the entire training process. To demonstrate our approach, we train both feedforward and recurrent neural networks with a combined fan-in/weight precision limit, a constraint that is, for example, present in the DYNAP-SE mixed-signal analog/digital neuromorphic processor. Q-rewiring simultaneously performs quantization and rewiring of synapses and synaptic weights through gradient descent updates and projecting the trainable parameters to a constraint-compliant region. Using our algorithm, we find trade-offs between the number of incoming connections to neurons and network performance for a number of common benchmark datasets.\",\"PeriodicalId\":198030,\"journal\":{\"name\":\"Neuromorphic Computing and Engineering\",\"volume\":\"102 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuromorphic Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2634-4386/accd8f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorphic Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/accd8f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantized rewiring: hardware-aware training of sparse deep neural networks
Mixed-signal and fully digital neuromorphic systems have been of significant interest for deploying spiking neural networks in an energy-efficient manner. However, many of these systems impose constraints in terms of fan-in, memory, or synaptic weight precision that have to be considered during network design and training. In this paper, we present quantized rewiring (Q-rewiring), an algorithm that can train both spiking and non-spiking neural networks while meeting hardware constraints during the entire training process. To demonstrate our approach, we train both feedforward and recurrent neural networks with a combined fan-in/weight precision limit, a constraint that is, for example, present in the DYNAP-SE mixed-signal analog/digital neuromorphic processor. Q-rewiring simultaneously performs quantization and rewiring of synapses and synaptic weights through gradient descent updates and projecting the trainable parameters to a constraint-compliant region. Using our algorithm, we find trade-offs between the number of incoming connections to neurons and network performance for a number of common benchmark datasets.