{"title":"基于编码器-解码器模型和迁移学习的简单而复杂的序列摘要生成","authors":"Y. Tagawa, Kazutaka Shimada","doi":"10.1109/IALP.2017.8300591","DOIUrl":null,"url":null,"abstract":"This paper describes an inning summarization method for a baseball game by using an encoder-decoder model. Each inning in a baseball game contains some events, such as hits, strikeouts, homeruns and scoring. Simplified description of the events leads to the improvement of readability of the inning information. Our method learns a relation between play-by-play data in each inning and inning reports. We also incorporate sophisticated expressions acquired from game summaries with the model. We call them Game-changing Phrase, GP. One problem in our task is the size of training data for the learning. To solve this problem, we apply a transfer learning approach into our method. In the experiment, we evaluate the effectiveness of our method with the transfer learning.","PeriodicalId":183586,"journal":{"name":"2017 International Conference on Asian Language Processing (IALP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple and sophisticated inning summary generation based on encoder-decoder model and transfer learning\",\"authors\":\"Y. Tagawa, Kazutaka Shimada\",\"doi\":\"10.1109/IALP.2017.8300591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an inning summarization method for a baseball game by using an encoder-decoder model. Each inning in a baseball game contains some events, such as hits, strikeouts, homeruns and scoring. Simplified description of the events leads to the improvement of readability of the inning information. Our method learns a relation between play-by-play data in each inning and inning reports. We also incorporate sophisticated expressions acquired from game summaries with the model. We call them Game-changing Phrase, GP. One problem in our task is the size of training data for the learning. To solve this problem, we apply a transfer learning approach into our method. In the experiment, we evaluate the effectiveness of our method with the transfer learning.\",\"PeriodicalId\":183586,\"journal\":{\"name\":\"2017 International Conference on Asian Language Processing (IALP)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2017.8300591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2017.8300591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simple and sophisticated inning summary generation based on encoder-decoder model and transfer learning
This paper describes an inning summarization method for a baseball game by using an encoder-decoder model. Each inning in a baseball game contains some events, such as hits, strikeouts, homeruns and scoring. Simplified description of the events leads to the improvement of readability of the inning information. Our method learns a relation between play-by-play data in each inning and inning reports. We also incorporate sophisticated expressions acquired from game summaries with the model. We call them Game-changing Phrase, GP. One problem in our task is the size of training data for the learning. To solve this problem, we apply a transfer learning approach into our method. In the experiment, we evaluate the effectiveness of our method with the transfer learning.