{"title":"感知原则指导视频分割","authors":"Cheng Chen, Guoliang Fan","doi":"10.1109/MMSP.2005.248664","DOIUrl":null,"url":null,"abstract":"In this paper, we present a perception principles-guided video segmentation method, where statistical modeling and graph-theoretic approaches are combined in a multi-layer classification architecture. Various visual cues are effectively incorporated in a sequential segmentation process. Specifically, low-level pixel-wise features are used in the first layer where a joint spatio-temporal statistical modeling approach is used to construct entry-level visual units in space-time. In the second layer, all units are first classified into dynamic or static units based their motion magnitudes. Then dynamic units are further parsed into over-segmented moving regions that are connected in space and time, and a mid-level feature, motion trajectory, is extracted for each moving region. In the third layer, still and moving regions are merged into background and moving objects by a graph-based approach with different similarity metrics. The proposed algorithm employs both long-range motion information, i.e., trajectory, and short-range motion information, i.e., change detection, to retain temporal continuity and spatial homogeneity of moving objects. The proposed multi-layer structure ensembles the joint spatio-temporal and cascade process of perception principles and support efficient and accurate object segmentation","PeriodicalId":191719,"journal":{"name":"2005 IEEE 7th Workshop on Multimedia Signal Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Perception Principles Guided Video Segmentation\",\"authors\":\"Cheng Chen, Guoliang Fan\",\"doi\":\"10.1109/MMSP.2005.248664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a perception principles-guided video segmentation method, where statistical modeling and graph-theoretic approaches are combined in a multi-layer classification architecture. Various visual cues are effectively incorporated in a sequential segmentation process. Specifically, low-level pixel-wise features are used in the first layer where a joint spatio-temporal statistical modeling approach is used to construct entry-level visual units in space-time. In the second layer, all units are first classified into dynamic or static units based their motion magnitudes. Then dynamic units are further parsed into over-segmented moving regions that are connected in space and time, and a mid-level feature, motion trajectory, is extracted for each moving region. In the third layer, still and moving regions are merged into background and moving objects by a graph-based approach with different similarity metrics. The proposed algorithm employs both long-range motion information, i.e., trajectory, and short-range motion information, i.e., change detection, to retain temporal continuity and spatial homogeneity of moving objects. The proposed multi-layer structure ensembles the joint spatio-temporal and cascade process of perception principles and support efficient and accurate object segmentation\",\"PeriodicalId\":191719,\"journal\":{\"name\":\"2005 IEEE 7th Workshop on Multimedia Signal Processing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE 7th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2005.248664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE 7th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2005.248664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we present a perception principles-guided video segmentation method, where statistical modeling and graph-theoretic approaches are combined in a multi-layer classification architecture. Various visual cues are effectively incorporated in a sequential segmentation process. Specifically, low-level pixel-wise features are used in the first layer where a joint spatio-temporal statistical modeling approach is used to construct entry-level visual units in space-time. In the second layer, all units are first classified into dynamic or static units based their motion magnitudes. Then dynamic units are further parsed into over-segmented moving regions that are connected in space and time, and a mid-level feature, motion trajectory, is extracted for each moving region. In the third layer, still and moving regions are merged into background and moving objects by a graph-based approach with different similarity metrics. The proposed algorithm employs both long-range motion information, i.e., trajectory, and short-range motion information, i.e., change detection, to retain temporal continuity and spatial homogeneity of moving objects. The proposed multi-layer structure ensembles the joint spatio-temporal and cascade process of perception principles and support efficient and accurate object segmentation