R. Bockstaele, C. Sys, J. Blondelle, H. de Neve, B. Dhoedt, I. Moerman, P. van Daele, R. Baets
{"title":"微腔led的整体效率为4%,进入数值孔径为0.5","authors":"R. Bockstaele, C. Sys, J. Blondelle, H. de Neve, B. Dhoedt, I. Moerman, P. van Daele, R. Baets","doi":"10.1109/LEOSST.1997.619109","DOIUrl":null,"url":null,"abstract":"Summary form only given. Microcavity LEDs were optimised for optical interconnect requirements. Overall quantum efficiency of up to 4.3% into a numerical aperture of 0.5 and a FWHM beam divergence angle of 105 degrees at a drive current of 1 mA was achieved. Microcavity LEDs with one gold and one GaAs-AlAs DBR-mirror have been optimized for efficiency into a limited NA of 0.5. Simulations indicate that an efficiency of 8% can be achieved. Experimental devices give a best value of 3.7%.","PeriodicalId":344325,"journal":{"name":"1997 Digest of the IEEE/LEOS Summer Topical Meeting: Vertical-Cavity Lasers/Technologies for a Global Information Infrastructure/WDM Components Technology/Advanced Semiconductor Lasers and Application","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Microcavity LEDs with an overall efficiency of 4% into a numerical aperture of 0.5\",\"authors\":\"R. Bockstaele, C. Sys, J. Blondelle, H. de Neve, B. Dhoedt, I. Moerman, P. van Daele, R. Baets\",\"doi\":\"10.1109/LEOSST.1997.619109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. Microcavity LEDs were optimised for optical interconnect requirements. Overall quantum efficiency of up to 4.3% into a numerical aperture of 0.5 and a FWHM beam divergence angle of 105 degrees at a drive current of 1 mA was achieved. Microcavity LEDs with one gold and one GaAs-AlAs DBR-mirror have been optimized for efficiency into a limited NA of 0.5. Simulations indicate that an efficiency of 8% can be achieved. Experimental devices give a best value of 3.7%.\",\"PeriodicalId\":344325,\"journal\":{\"name\":\"1997 Digest of the IEEE/LEOS Summer Topical Meeting: Vertical-Cavity Lasers/Technologies for a Global Information Infrastructure/WDM Components Technology/Advanced Semiconductor Lasers and Application\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1997 Digest of the IEEE/LEOS Summer Topical Meeting: Vertical-Cavity Lasers/Technologies for a Global Information Infrastructure/WDM Components Technology/Advanced Semiconductor Lasers and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LEOSST.1997.619109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 Digest of the IEEE/LEOS Summer Topical Meeting: Vertical-Cavity Lasers/Technologies for a Global Information Infrastructure/WDM Components Technology/Advanced Semiconductor Lasers and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LEOSST.1997.619109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microcavity LEDs with an overall efficiency of 4% into a numerical aperture of 0.5
Summary form only given. Microcavity LEDs were optimised for optical interconnect requirements. Overall quantum efficiency of up to 4.3% into a numerical aperture of 0.5 and a FWHM beam divergence angle of 105 degrees at a drive current of 1 mA was achieved. Microcavity LEDs with one gold and one GaAs-AlAs DBR-mirror have been optimized for efficiency into a limited NA of 0.5. Simulations indicate that an efficiency of 8% can be achieved. Experimental devices give a best value of 3.7%.