Soumaya Cherichi, R. Faiz
{"title":"利用时间标记从微博中检测事件","authors":"Soumaya Cherichi, R. Faiz","doi":"10.4018/IJKSR.2017070104","DOIUrl":null,"url":null,"abstract":"Oneofthemarvelsofourtimeistheunprecedenteddevelopmentanduseoftechnologiesthatsupport socialinteraction.Socialmediatingtechnologieshaveengenderedradicallynewwaysofinformation andcommunication,particularlyduringevents;incaseofnaturaldisasterlikeearthquakestsunami andAmericanpresidentialelection.ThispaperisbasedondataobtainedfromTwitterbecauseof itspopularityandsheerdatavolume.Thiscontentcanbecombinedandprocessedtodetectevents, entitiesandpopularmoodstofeedvariousnewlarge-scaledata-analysisapplications.Onthedownside, thesecontentitemsareverynoisyandhighlyinformal,makingitdifficulttoextractsenseoutofthe stream.Takingtoaccountallthedifficulties,weproposeaneweventdetectionapproachcombining linguisticfeaturesandTwitterfeatures.Finally,wepresentoursystemthataims(1)detectnewevents, (2)torecognizetemporalmarkerspatternofanevent,(3)andtoclassifyimportanteventsaccording tothematicpertinence,authorpertinenceandtweetvolume. KEywoRDS Clustering, Event Detection, Microblogs, NLP, Patterns, Social Network Analysis, Temporal Markers, Twitter","PeriodicalId":296518,"journal":{"name":"Int. J. Knowl. Soc. Res.","volume":"101 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Leveraging Temporal Markers to Detect Event from Microblogs\",\"authors\":\"Soumaya Cherichi, R. Faiz\",\"doi\":\"10.4018/IJKSR.2017070104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oneofthemarvelsofourtimeistheunprecedenteddevelopmentanduseoftechnologiesthatsupport socialinteraction.Socialmediatingtechnologieshaveengenderedradicallynewwaysofinformation andcommunication,particularlyduringevents;incaseofnaturaldisasterlikeearthquakestsunami andAmericanpresidentialelection.ThispaperisbasedondataobtainedfromTwitterbecauseof itspopularityandsheerdatavolume.Thiscontentcanbecombinedandprocessedtodetectevents, entitiesandpopularmoodstofeedvariousnewlarge-scaledata-analysisapplications.Onthedownside, thesecontentitemsareverynoisyandhighlyinformal,makingitdifficulttoextractsenseoutofthe stream.Takingtoaccountallthedifficulties,weproposeaneweventdetectionapproachcombining linguisticfeaturesandTwitterfeatures.Finally,wepresentoursystemthataims(1)detectnewevents, (2)torecognizetemporalmarkerspatternofanevent,(3)andtoclassifyimportanteventsaccording tothematicpertinence,authorpertinenceandtweetvolume. KEywoRDS Clustering, Event Detection, Microblogs, NLP, Patterns, Social Network Analysis, Temporal Markers, Twitter\",\"PeriodicalId\":296518,\"journal\":{\"name\":\"Int. J. Knowl. Soc. Res.\",\"volume\":\"101 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Soc. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJKSR.2017070104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Soc. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJKSR.2017070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Leveraging Temporal Markers to Detect Event from Microblogs
Oneofthemarvelsofourtimeistheunprecedenteddevelopmentanduseoftechnologiesthatsupport socialinteraction.Socialmediatingtechnologieshaveengenderedradicallynewwaysofinformation andcommunication,particularlyduringevents;incaseofnaturaldisasterlikeearthquakestsunami andAmericanpresidentialelection.ThispaperisbasedondataobtainedfromTwitterbecauseof itspopularityandsheerdatavolume.Thiscontentcanbecombinedandprocessedtodetectevents, entitiesandpopularmoodstofeedvariousnewlarge-scaledata-analysisapplications.Onthedownside, thesecontentitemsareverynoisyandhighlyinformal,makingitdifficulttoextractsenseoutofthe stream.Takingtoaccountallthedifficulties,weproposeaneweventdetectionapproachcombining linguisticfeaturesandTwitterfeatures.Finally,wepresentoursystemthataims(1)detectnewevents, (2)torecognizetemporalmarkerspatternofanevent,(3)andtoclassifyimportanteventsaccording tothematicpertinence,authorpertinenceandtweetvolume. KEywoRDS Clustering, Event Detection, Microblogs, NLP, Patterns, Social Network Analysis, Temporal Markers, Twitter