匿名网络中最大匹配的自稳定算法

Johanne Cohen, Jonas Lefèvre, Khaled Maâmra, Laurence Pilard, D. Sohier
{"title":"匿名网络中最大匹配的自稳定算法","authors":"Johanne Cohen, Jonas Lefèvre, Khaled Maâmra, Laurence Pilard, D. Sohier","doi":"10.1142/S012962641650016X","DOIUrl":null,"url":null,"abstract":"We propose a self-stabilizing algorithm for computing a maximal matching in an anonymous network. The complexity is O(2) moves with high probability, under the adversarial distributed daemon. Among all adversarial distributed daemons and with the anonymous assumption, our algorithm provides the best known complexity. Moreover, the previous best known algorithm working under the same daemon and using identity has a O(m) complexity leading to the same order of growth than our anonymous algorithm. Finally, we do not make the common assumption that a node can determine whether one of its neighbors points to it or to another node, and still we present a solution with the same asymptotic behavior.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Self-Stabilizing Algorithm for Maximal Matching in Anonymous Networks\",\"authors\":\"Johanne Cohen, Jonas Lefèvre, Khaled Maâmra, Laurence Pilard, D. Sohier\",\"doi\":\"10.1142/S012962641650016X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a self-stabilizing algorithm for computing a maximal matching in an anonymous network. The complexity is O(2) moves with high probability, under the adversarial distributed daemon. Among all adversarial distributed daemons and with the anonymous assumption, our algorithm provides the best known complexity. Moreover, the previous best known algorithm working under the same daemon and using identity has a O(m) complexity leading to the same order of growth than our anonymous algorithm. Finally, we do not make the common assumption that a node can determine whether one of its neighbors points to it or to another node, and still we present a solution with the same asymptotic behavior.\",\"PeriodicalId\":422436,\"journal\":{\"name\":\"Parallel Process. Lett.\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Process. Lett.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S012962641650016X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S012962641650016X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

提出了一种计算匿名网络中最大匹配的自稳定算法。在对抗性分布式守护进程下,复杂度为高概率O(2)次移动。在所有对抗性分布式守护进程和匿名假设中,我们的算法提供了最著名的复杂性。此外,以前最著名的算法在同一守护进程下工作并使用身份具有O(m)复杂度,导致与我们的匿名算法相同的增长顺序。最后,我们不做一般的假设,即一个节点可以确定它的一个邻居是指向它还是指向另一个节点,但我们仍然提出了一个具有相同渐近行为的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Self-Stabilizing Algorithm for Maximal Matching in Anonymous Networks
We propose a self-stabilizing algorithm for computing a maximal matching in an anonymous network. The complexity is O(2) moves with high probability, under the adversarial distributed daemon. Among all adversarial distributed daemons and with the anonymous assumption, our algorithm provides the best known complexity. Moreover, the previous best known algorithm working under the same daemon and using identity has a O(m) complexity leading to the same order of growth than our anonymous algorithm. Finally, we do not make the common assumption that a node can determine whether one of its neighbors points to it or to another node, and still we present a solution with the same asymptotic behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信