求解非线性波动方程的新解析方法及应用

Ram Dayal Pankaj
{"title":"求解非线性波动方程的新解析方法及应用","authors":"Ram Dayal Pankaj","doi":"10.52280/pujm.2022.540901","DOIUrl":null,"url":null,"abstract":":The proposed analytical approach is a sophisticated grouping of Elzaki Transform and Homotopy Analysis Method (HAM), called Homotopy Analysis Elzaki Transform (HAET) method, for solving Non-linear Wave System which is combination of two wave equations (Telegraph and Klein Gordon (K-G) Type Equations). This study will be exemplifying\nto well-becoming character of HAET method. The obtained solution is\ngraphically sketched.","PeriodicalId":205373,"journal":{"name":"Punjab University Journal of Mathematics","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"New Analytical Method and Application for Solve the Nonlinear Wave Equation\",\"authors\":\"Ram Dayal Pankaj\",\"doi\":\"10.52280/pujm.2022.540901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\":The proposed analytical approach is a sophisticated grouping of Elzaki Transform and Homotopy Analysis Method (HAM), called Homotopy Analysis Elzaki Transform (HAET) method, for solving Non-linear Wave System which is combination of two wave equations (Telegraph and Klein Gordon (K-G) Type Equations). This study will be exemplifying\\nto well-becoming character of HAET method. The obtained solution is\\ngraphically sketched.\",\"PeriodicalId\":205373,\"journal\":{\"name\":\"Punjab University Journal of Mathematics\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Punjab University Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52280/pujm.2022.540901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Punjab University Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52280/pujm.2022.540901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出的解析方法是Elzaki变换和同伦分析方法(HAM)的一种复杂组合,称为同伦分析Elzaki变换(HAET)方法,用于求解由两个波动方程(Telegraph和Klein Gordon (K-G)型方程)组成的非线性波动系统。本研究将举例说明HAET方法的福祉特性。得到的解用图形表示出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Analytical Method and Application for Solve the Nonlinear Wave Equation
:The proposed analytical approach is a sophisticated grouping of Elzaki Transform and Homotopy Analysis Method (HAM), called Homotopy Analysis Elzaki Transform (HAET) method, for solving Non-linear Wave System which is combination of two wave equations (Telegraph and Klein Gordon (K-G) Type Equations). This study will be exemplifying to well-becoming character of HAET method. The obtained solution is graphically sketched.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信