论低集[复杂度类]的结构

J. Kobler
{"title":"论低集[复杂度类]的结构","authors":"J. Kobler","doi":"10.1109/SCT.1995.514863","DOIUrl":null,"url":null,"abstract":"Over a decade ago, V. Schoning introduced the concept of lowness into structural complexity theory. Since then a large body of results has been obtained classifying various complexity classes according to their lowness properties. In this paper we highlight some of the more recent advances on selected topics in the area. Among the lowness properties we consider are polynomial-size circuit complexity, membership comparability, approximability, selectivity, and cheatability. Furthermore, we review some of the recent results concerning lowness for counting classes.","PeriodicalId":318382,"journal":{"name":"Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"On the structure of low sets [complexity classes]\",\"authors\":\"J. Kobler\",\"doi\":\"10.1109/SCT.1995.514863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over a decade ago, V. Schoning introduced the concept of lowness into structural complexity theory. Since then a large body of results has been obtained classifying various complexity classes according to their lowness properties. In this paper we highlight some of the more recent advances on selected topics in the area. Among the lowness properties we consider are polynomial-size circuit complexity, membership comparability, approximability, selectivity, and cheatability. Furthermore, we review some of the recent results concerning lowness for counting classes.\",\"PeriodicalId\":318382,\"journal\":{\"name\":\"Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCT.1995.514863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1995.514863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

十多年前,Schoning在结构复杂性理论中引入了低度的概念。从那以后,人们根据复杂度的低属性对复杂度类进行了大量的分类。在本文中,我们重点介绍了该领域选定主题的一些最新进展。我们考虑的低属性包括多项式大小的电路复杂度、成员可比性、近似性、选择性和可欺诈性。此外,我们回顾了最近关于计数类的低度的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the structure of low sets [complexity classes]
Over a decade ago, V. Schoning introduced the concept of lowness into structural complexity theory. Since then a large body of results has been obtained classifying various complexity classes according to their lowness properties. In this paper we highlight some of the more recent advances on selected topics in the area. Among the lowness properties we consider are polynomial-size circuit complexity, membership comparability, approximability, selectivity, and cheatability. Furthermore, we review some of the recent results concerning lowness for counting classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信