多元多项式因子的复杂性

Peter Burgisser
{"title":"多元多项式因子的复杂性","authors":"Peter Burgisser","doi":"10.1109/SFCS.2001.959912","DOIUrl":null,"url":null,"abstract":"The existence of string functions, which are not polynomial time computable, but whose graph is checkable in polynomial time, is a basic assumption in cryptography. We prove that in the framework of algebraic complexity, there are no such families of polynomial functions of p-bounded degree overfields of characteristic zero. The proof relies on a polynomial upper bound on the approximative complexity of a factor g of a polynomial f in terms of the (approximative) complexity of f and the degree of the factor g. This extends a result by E. Kaltofen (1986). The concept of approximative complexity allows us to cope with the case that a factor has an exponential multiplicity, by using a perturbation argument. Our result extends to randomized (two-sided error) decision complexity.","PeriodicalId":378126,"journal":{"name":"Proceedings 2001 IEEE International Conference on Cluster Computing","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"The complexity of factors of multivariate polynomials\",\"authors\":\"Peter Burgisser\",\"doi\":\"10.1109/SFCS.2001.959912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of string functions, which are not polynomial time computable, but whose graph is checkable in polynomial time, is a basic assumption in cryptography. We prove that in the framework of algebraic complexity, there are no such families of polynomial functions of p-bounded degree overfields of characteristic zero. The proof relies on a polynomial upper bound on the approximative complexity of a factor g of a polynomial f in terms of the (approximative) complexity of f and the degree of the factor g. This extends a result by E. Kaltofen (1986). The concept of approximative complexity allows us to cope with the case that a factor has an exponential multiplicity, by using a perturbation argument. Our result extends to randomized (two-sided error) decision complexity.\",\"PeriodicalId\":378126,\"journal\":{\"name\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.2001.959912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.2001.959912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

字符串函数在多项式时间内不可计算,但其图在多项式时间内可校验,这是密码学中的一个基本假设。证明了在代数复杂度的框架下,特征为零的域上不存在p有界的多项式函数族。这个证明依赖于多项式f的一个因子g的近似复杂性的多项式上界,这个近似复杂性是根据f的(近似)复杂性和因子g的程度来表示的。这扩展了E. Kaltofen(1986)的一个结果。近似复杂性的概念允许我们通过使用摄动论证来处理因子具有指数多重性的情况。我们的结果扩展到随机(双侧误差)决策复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The complexity of factors of multivariate polynomials
The existence of string functions, which are not polynomial time computable, but whose graph is checkable in polynomial time, is a basic assumption in cryptography. We prove that in the framework of algebraic complexity, there are no such families of polynomial functions of p-bounded degree overfields of characteristic zero. The proof relies on a polynomial upper bound on the approximative complexity of a factor g of a polynomial f in terms of the (approximative) complexity of f and the degree of the factor g. This extends a result by E. Kaltofen (1986). The concept of approximative complexity allows us to cope with the case that a factor has an exponential multiplicity, by using a perturbation argument. Our result extends to randomized (two-sided error) decision complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信