$\mathcal{H}_{\infty}$ 具有中间扰动界失配的超扭转算法的最优参数

Daipeng Zhang, J. Reger
{"title":"$\\mathcal{H}_{\\infty}$ 具有中间扰动界失配的超扭转算法的最优参数","authors":"Daipeng Zhang, J. Reger","doi":"10.1109/VSS.2018.8460421","DOIUrl":null,"url":null,"abstract":"The super-twisting algorithm is studied for the case when a disturbance whose derivative is $\\mathcal{L}_{2}$-norm bounded and violates its presumed Lipschitz bound from time to time. In such interim time span the state may be driven away from the origin and converge again once the derivative of the disturbance reenters the presumed Lipschitz bound. We present an $\\mathcal{H}_{\\infty}$-norm optimal parameter range for choosing the super-twisting gains to minimize the $\\mathcal{L}_{2}$-gain of a matched disturbance in this worst case scenario. Simulations show that such parameter choice may provide better results, compared to other choices.","PeriodicalId":127777,"journal":{"name":"2018 15th International Workshop on Variable Structure Systems (VSS)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\mathcal{H}_{\\\\infty}$ Optimal Parameters for the Super-Twisting Algorithm with Intermediate Disturbance Bound Mismatch\",\"authors\":\"Daipeng Zhang, J. Reger\",\"doi\":\"10.1109/VSS.2018.8460421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The super-twisting algorithm is studied for the case when a disturbance whose derivative is $\\\\mathcal{L}_{2}$-norm bounded and violates its presumed Lipschitz bound from time to time. In such interim time span the state may be driven away from the origin and converge again once the derivative of the disturbance reenters the presumed Lipschitz bound. We present an $\\\\mathcal{H}_{\\\\infty}$-norm optimal parameter range for choosing the super-twisting gains to minimize the $\\\\mathcal{L}_{2}$-gain of a matched disturbance in this worst case scenario. Simulations show that such parameter choice may provide better results, compared to other choices.\",\"PeriodicalId\":127777,\"journal\":{\"name\":\"2018 15th International Workshop on Variable Structure Systems (VSS)\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Workshop on Variable Structure Systems (VSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VSS.2018.8460421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Workshop on Variable Structure Systems (VSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSS.2018.8460421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了导数为$\mathcal{L}_{2}$范数有界的扰动的超扭转算法。在这样的过渡时间范围内,状态可能会远离原点,一旦扰动的导数重新进入假定的李普希茨界,状态就会再次收敛。我们提出了一个$\mathcal{H}_{\infty}$范数最优参数范围,用于选择超扭转增益,以在最坏情况下最小化匹配扰动的$\mathcal{L}_{2}$增益。仿真结果表明,与其他选择相比,这种参数选择可以提供更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$\mathcal{H}_{\infty}$ Optimal Parameters for the Super-Twisting Algorithm with Intermediate Disturbance Bound Mismatch
The super-twisting algorithm is studied for the case when a disturbance whose derivative is $\mathcal{L}_{2}$-norm bounded and violates its presumed Lipschitz bound from time to time. In such interim time span the state may be driven away from the origin and converge again once the derivative of the disturbance reenters the presumed Lipschitz bound. We present an $\mathcal{H}_{\infty}$-norm optimal parameter range for choosing the super-twisting gains to minimize the $\mathcal{L}_{2}$-gain of a matched disturbance in this worst case scenario. Simulations show that such parameter choice may provide better results, compared to other choices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信