实验比较了双指数平滑和基于卡尔曼滤波的预测跟踪算法

J. Laviola
{"title":"实验比较了双指数平滑和基于卡尔曼滤波的预测跟踪算法","authors":"J. Laviola","doi":"10.1109/VR.2003.1191164","DOIUrl":null,"url":null,"abstract":"We present an experiment comparing double exponential smoothing and Kalman filter-based predictive tracking algorithms with derivative free measurement models. Our results show that the double exponential smoothers run approximately 135 times faster with equivalent prediction performance. The paper briefly describes the algorithms used in the experiment and discusses the results.","PeriodicalId":105245,"journal":{"name":"IEEE Virtual Reality, 2003. Proceedings.","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"An experiment comparing double exponential smoothing and Kalman filter-based predictive tracking algorithms\",\"authors\":\"J. Laviola\",\"doi\":\"10.1109/VR.2003.1191164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an experiment comparing double exponential smoothing and Kalman filter-based predictive tracking algorithms with derivative free measurement models. Our results show that the double exponential smoothers run approximately 135 times faster with equivalent prediction performance. The paper briefly describes the algorithms used in the experiment and discusses the results.\",\"PeriodicalId\":105245,\"journal\":{\"name\":\"IEEE Virtual Reality, 2003. Proceedings.\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Virtual Reality, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VR.2003.1191164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Virtual Reality, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2003.1191164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

我们提出了一个实验,比较了双指数平滑和基于卡尔曼滤波的无导数测量模型预测跟踪算法。结果表明,双指数平滑器的运行速度提高了约135倍,预测性能相当。本文简要介绍了实验中使用的算法,并对实验结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An experiment comparing double exponential smoothing and Kalman filter-based predictive tracking algorithms
We present an experiment comparing double exponential smoothing and Kalman filter-based predictive tracking algorithms with derivative free measurement models. Our results show that the double exponential smoothers run approximately 135 times faster with equivalent prediction performance. The paper briefly describes the algorithms used in the experiment and discusses the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信