缓解由SiC驱动的电机反射过电压的智能线圈

M. T. Fard, Jiangbiao He, Milad Sadoughi, B. Mirafzal, Fariba Fateh
{"title":"缓解由SiC驱动的电机反射过电压的智能线圈","authors":"M. T. Fard, Jiangbiao He, Milad Sadoughi, B. Mirafzal, Fariba Fateh","doi":"10.1109/APEC43580.2023.10131221","DOIUrl":null,"url":null,"abstract":"High dv/dt from the emerging SiC variable-frequency drives can easily induce overvoltage across the motor stator winding terminals, especially for long-cable-connected and high-voltage motor-drive systems. Due to the fast switching speed and surge impedance mismatch between cables and motors, this overvoltage can be two times or even higher than the DC-bus voltage of the inverter, resulting in motor insulation degradation or irreversible breakdown. The most common solution to mitigate such overvoltage is to install a dv/dt or a sinewave filter at the output of the drive, which decreases the efficiency and power density of the system. Among different stator coils, the first one (close to the drive side) is the most susceptible to insulation breakdown since it experiences higher overvoltage than the others due to the nonlinear distribution of the reflected surge voltages. In this paper, an innovative high-efficiency ultracompact mitigation solution is introduced, which is a tiny auxiliary circuit embedded inside the motor stator (or at the motor terminal box), specifically across the first few coils of each phase (i.e., smart coils). The proposed smart coil circuit effectively mitigates the surge overvoltage, which can be scalable to any type of motor-drive systems, regardless of cable length and semiconductor rise time. The proposed solution can dramatically improve the reliability, efficiency, and power density of motor-drive systems.","PeriodicalId":151216,"journal":{"name":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Smart Coils for Mitigation of Motor Reflected Overvoltage Fed by SiC Drives\",\"authors\":\"M. T. Fard, Jiangbiao He, Milad Sadoughi, B. Mirafzal, Fariba Fateh\",\"doi\":\"10.1109/APEC43580.2023.10131221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High dv/dt from the emerging SiC variable-frequency drives can easily induce overvoltage across the motor stator winding terminals, especially for long-cable-connected and high-voltage motor-drive systems. Due to the fast switching speed and surge impedance mismatch between cables and motors, this overvoltage can be two times or even higher than the DC-bus voltage of the inverter, resulting in motor insulation degradation or irreversible breakdown. The most common solution to mitigate such overvoltage is to install a dv/dt or a sinewave filter at the output of the drive, which decreases the efficiency and power density of the system. Among different stator coils, the first one (close to the drive side) is the most susceptible to insulation breakdown since it experiences higher overvoltage than the others due to the nonlinear distribution of the reflected surge voltages. In this paper, an innovative high-efficiency ultracompact mitigation solution is introduced, which is a tiny auxiliary circuit embedded inside the motor stator (or at the motor terminal box), specifically across the first few coils of each phase (i.e., smart coils). The proposed smart coil circuit effectively mitigates the surge overvoltage, which can be scalable to any type of motor-drive systems, regardless of cable length and semiconductor rise time. The proposed solution can dramatically improve the reliability, efficiency, and power density of motor-drive systems.\",\"PeriodicalId\":151216,\"journal\":{\"name\":\"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC43580.2023.10131221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC43580.2023.10131221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

新兴的SiC变频驱动器的高dv/dt很容易引起电机定子绕组端子的过电压,特别是对于长电缆连接和高压电机驱动系统。由于电缆与电机之间的开关速度快,浪涌阻抗失配,这种过电压可能是逆变器直流母线电压的两倍甚至更高,导致电机绝缘退化或不可逆击穿。缓解这种过电压的最常见的解决方案是在驱动器的输出端安装dv/dt或正弦波滤波器,这会降低系统的效率和功率密度。在不同的定子线圈中,第一个线圈(靠近驱动侧)最容易受到绝缘击穿的影响,因为由于反射浪涌电压的非线性分布,它比其他线圈经历更高的过电压。在本文中,介绍了一种创新的高效超紧凑缓解解决方案,该解决方案是嵌入在电机定子(或电机端子盒)内的微型辅助电路,特别是在每个相位的前几个线圈(即智能线圈)上。所提出的智能线圈电路有效地减轻了浪涌过电压,可以扩展到任何类型的电机驱动系统,而不受电缆长度和半导体上升时间的影响。提出的解决方案可以显著提高电机驱动系统的可靠性、效率和功率密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart Coils for Mitigation of Motor Reflected Overvoltage Fed by SiC Drives
High dv/dt from the emerging SiC variable-frequency drives can easily induce overvoltage across the motor stator winding terminals, especially for long-cable-connected and high-voltage motor-drive systems. Due to the fast switching speed and surge impedance mismatch between cables and motors, this overvoltage can be two times or even higher than the DC-bus voltage of the inverter, resulting in motor insulation degradation or irreversible breakdown. The most common solution to mitigate such overvoltage is to install a dv/dt or a sinewave filter at the output of the drive, which decreases the efficiency and power density of the system. Among different stator coils, the first one (close to the drive side) is the most susceptible to insulation breakdown since it experiences higher overvoltage than the others due to the nonlinear distribution of the reflected surge voltages. In this paper, an innovative high-efficiency ultracompact mitigation solution is introduced, which is a tiny auxiliary circuit embedded inside the motor stator (or at the motor terminal box), specifically across the first few coils of each phase (i.e., smart coils). The proposed smart coil circuit effectively mitigates the surge overvoltage, which can be scalable to any type of motor-drive systems, regardless of cable length and semiconductor rise time. The proposed solution can dramatically improve the reliability, efficiency, and power density of motor-drive systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信