{"title":"基于6T混合TFET-FinFET单元的125mV 2ns访问时间16Kb SRAM设计","authors":"H. Afzali-Kusha, A. Shafaei, M. Pedram","doi":"10.1109/ISQED.2018.8357301","DOIUrl":null,"url":null,"abstract":"This paper proposes a robust and energy-efficient hybrid TFET-FinFET 6T SRAM cell which takes advantage of the higher ON/OFF current ratio of TFETs compared to that of FinFETs to reliably hold and access data at ultra-low supply voltages. More precisely, in the proposed hybrid cell, to achieve low static currents along with high noise margins, TFETs are used for cross-coupled inverters, and to speed up the access time, high-performance FinFETs are utilized for access transistors. The paper also presents a dual-Vt 6T SRAM, in which low-power (high-Vt) and high-performance (low-Vt) FinFETs are used for cross-coupled inverters and access transistors, respectively. For both SRAM cells, the Vdd boost read-assist technique is employed to improve the read stability. Characteristics of both SRAMs are analyzed using HSPICE simulations for technologies with the gate length of 20 nm for a 128\\times 128 SRAM array. Simulation results reveal that the lowest operating Vdd for the dual-Vt cell is 225 mV, whereas that of the hybrid cell is 125 mV. Moreover, to further decrease the access delay of the hybrid cell for 125 mV ≤ Vdd ≤ 225 mV, negative Gnd read-assist technique and a boosted voltage for the row decoder are used. Finally, the paper presents a 125mV 2ns-access-time 16Kb SRAM array based on the proposed hybrid TFET-FinFET SRAM cell.","PeriodicalId":213351,"journal":{"name":"2018 19th International Symposium on Quality Electronic Design (ISQED)","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A 125mV 2ns-access-time 16Kb SRAM design based on a 6T hybrid TFET-FinFET cell\",\"authors\":\"H. Afzali-Kusha, A. Shafaei, M. Pedram\",\"doi\":\"10.1109/ISQED.2018.8357301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a robust and energy-efficient hybrid TFET-FinFET 6T SRAM cell which takes advantage of the higher ON/OFF current ratio of TFETs compared to that of FinFETs to reliably hold and access data at ultra-low supply voltages. More precisely, in the proposed hybrid cell, to achieve low static currents along with high noise margins, TFETs are used for cross-coupled inverters, and to speed up the access time, high-performance FinFETs are utilized for access transistors. The paper also presents a dual-Vt 6T SRAM, in which low-power (high-Vt) and high-performance (low-Vt) FinFETs are used for cross-coupled inverters and access transistors, respectively. For both SRAM cells, the Vdd boost read-assist technique is employed to improve the read stability. Characteristics of both SRAMs are analyzed using HSPICE simulations for technologies with the gate length of 20 nm for a 128\\\\times 128 SRAM array. Simulation results reveal that the lowest operating Vdd for the dual-Vt cell is 225 mV, whereas that of the hybrid cell is 125 mV. Moreover, to further decrease the access delay of the hybrid cell for 125 mV ≤ Vdd ≤ 225 mV, negative Gnd read-assist technique and a boosted voltage for the row decoder are used. Finally, the paper presents a 125mV 2ns-access-time 16Kb SRAM array based on the proposed hybrid TFET-FinFET SRAM cell.\",\"PeriodicalId\":213351,\"journal\":{\"name\":\"2018 19th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"170 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 19th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2018.8357301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2018.8357301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 125mV 2ns-access-time 16Kb SRAM design based on a 6T hybrid TFET-FinFET cell
This paper proposes a robust and energy-efficient hybrid TFET-FinFET 6T SRAM cell which takes advantage of the higher ON/OFF current ratio of TFETs compared to that of FinFETs to reliably hold and access data at ultra-low supply voltages. More precisely, in the proposed hybrid cell, to achieve low static currents along with high noise margins, TFETs are used for cross-coupled inverters, and to speed up the access time, high-performance FinFETs are utilized for access transistors. The paper also presents a dual-Vt 6T SRAM, in which low-power (high-Vt) and high-performance (low-Vt) FinFETs are used for cross-coupled inverters and access transistors, respectively. For both SRAM cells, the Vdd boost read-assist technique is employed to improve the read stability. Characteristics of both SRAMs are analyzed using HSPICE simulations for technologies with the gate length of 20 nm for a 128\times 128 SRAM array. Simulation results reveal that the lowest operating Vdd for the dual-Vt cell is 225 mV, whereas that of the hybrid cell is 125 mV. Moreover, to further decrease the access delay of the hybrid cell for 125 mV ≤ Vdd ≤ 225 mV, negative Gnd read-assist technique and a boosted voltage for the row decoder are used. Finally, the paper presents a 125mV 2ns-access-time 16Kb SRAM array based on the proposed hybrid TFET-FinFET SRAM cell.