使用Tidlists和其他Apriori实现的近候选少Apriori

M. Biçer, Daniel Indictor, Ryan Yang, Xiaowen Zhang
{"title":"使用Tidlists和其他Apriori实现的近候选少Apriori","authors":"M. Biçer, Daniel Indictor, Ryan Yang, Xiaowen Zhang","doi":"10.4018/ijal.286163","DOIUrl":null,"url":null,"abstract":"In this study we implemented four different versions of Apriori, namely, basic and basic multi-threaded, bloom filter, trie, and count-min sketch, and proposed a new algorithm – NCLAT (Near Candidate-Less Apriori with Tidlists). We compared the runtimes and max memory usages of our implementations among each other as well as with the runtime of Borgelt’s Apriori implementation in some of the cases. NCLAT implementation is more efficient than the other Apriori implementations that we know of in terms of the number of times the database is scanned, and the number of candidates generated. Unlike the original Apriori algorithm which scans the database for every level and creates all of the candidates in advance for each level, NCLAT scans the database only once and creates candidate itemsets only for level one but not afterwards. Thus the number of candidates created is equal to the number of unique items in the database.","PeriodicalId":443888,"journal":{"name":"Int. J. Appl. Logist.","volume":"74 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Near Candidate-Less Apriori With Tidlists and Other Apriori Implementations\",\"authors\":\"M. Biçer, Daniel Indictor, Ryan Yang, Xiaowen Zhang\",\"doi\":\"10.4018/ijal.286163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study we implemented four different versions of Apriori, namely, basic and basic multi-threaded, bloom filter, trie, and count-min sketch, and proposed a new algorithm – NCLAT (Near Candidate-Less Apriori with Tidlists). We compared the runtimes and max memory usages of our implementations among each other as well as with the runtime of Borgelt’s Apriori implementation in some of the cases. NCLAT implementation is more efficient than the other Apriori implementations that we know of in terms of the number of times the database is scanned, and the number of candidates generated. Unlike the original Apriori algorithm which scans the database for every level and creates all of the candidates in advance for each level, NCLAT scans the database only once and creates candidate itemsets only for level one but not afterwards. Thus the number of candidates created is equal to the number of unique items in the database.\",\"PeriodicalId\":443888,\"journal\":{\"name\":\"Int. J. Appl. Logist.\",\"volume\":\"74 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Appl. Logist.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijal.286163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Appl. Logist.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijal.286163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项研究中,我们实现了四个不同版本的Apriori,即基本和基本多线程、bloom filter、trie和count-min sketch,并提出了一个新的算法- NCLAT (Near Candidate-Less Apriori with Tidlists)。我们比较了各自实现的运行时和最大内存使用量,并在某些情况下与Borgelt的Apriori实现的运行时进行了比较。在扫描数据库的次数和生成的候选数量方面,NCLAT实现比我们所知道的其他Apriori实现更有效。与原始的Apriori算法不同,它为每个级别扫描数据库并提前为每个级别创建所有候选项集,NCLAT只扫描数据库一次,并仅为第一级创建候选项集,但之后不会创建候选项集。因此,创建的候选项的数量等于数据库中唯一项的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near Candidate-Less Apriori With Tidlists and Other Apriori Implementations
In this study we implemented four different versions of Apriori, namely, basic and basic multi-threaded, bloom filter, trie, and count-min sketch, and proposed a new algorithm – NCLAT (Near Candidate-Less Apriori with Tidlists). We compared the runtimes and max memory usages of our implementations among each other as well as with the runtime of Borgelt’s Apriori implementation in some of the cases. NCLAT implementation is more efficient than the other Apriori implementations that we know of in terms of the number of times the database is scanned, and the number of candidates generated. Unlike the original Apriori algorithm which scans the database for every level and creates all of the candidates in advance for each level, NCLAT scans the database only once and creates candidate itemsets only for level one but not afterwards. Thus the number of candidates created is equal to the number of unique items in the database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信