{"title":"异构移动云环境下的移动性和故障感知自适应任务卸载","authors":"A. Lakhan, Xiaoping Li","doi":"10.4108/eai.3-9-2019.159947","DOIUrl":null,"url":null,"abstract":"Nowadays, Mobile Cloud Computing (MCC) has become a predominant prototype for fetching the benefits of cloud computing to mobile devices’ propinquity. Service availability in addition to performance enhancement and mobility features is a preliminary goal in MCC. This paper proposes a mobility aware adaptive offloading framework, known as Mob-Cloud, which includes a mobile device as a thick client, ad-hoc networking, cloudlet DC, and remote cloud services, to augment the performance and availability of the MCC services. However, the impact of dynamic changes in a mobile content (e.g., network status, bandwidth, latency, and location) for the task offloading model observes through proposing a mobility aware adaptive task offloading algorithm (MATOA), which makes a task offloading decision at runtime on selecting optimal wireless network channels and suitable resources for offloading. In this paper, we are formulating the decision problem, and it is well-known as an NP-hard problem. Nonetheless, MATOA has the following phases for the entire Mob-Cloud model: (i) adaptive offloading decision based on real-time information, (ii) workflow task scheduling phase, (iii) mobility model phase to motivate end-user invoke cloud services seamlessly while roaming, and (iv) faulttolerant phase to deal with failure (either network or node). We carry out actual real-life experiments at the implemented instruments to evaluate the overall performance of the MATOA algorithm. Evaluation results prove that MATOA adopts dynamic changes on offloading decision during run-time, and meet an enormous reduction in the total response time with the improved service availability whilst in comparison with the baseline task offloading strategies.","PeriodicalId":299985,"journal":{"name":"EAI Endorsed Trans. Mob. Commun. Appl.","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Mobility and Fault Aware Adaptive Task Offloading in Heterogeneous Mobile Cloud Environments\",\"authors\":\"A. Lakhan, Xiaoping Li\",\"doi\":\"10.4108/eai.3-9-2019.159947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, Mobile Cloud Computing (MCC) has become a predominant prototype for fetching the benefits of cloud computing to mobile devices’ propinquity. Service availability in addition to performance enhancement and mobility features is a preliminary goal in MCC. This paper proposes a mobility aware adaptive offloading framework, known as Mob-Cloud, which includes a mobile device as a thick client, ad-hoc networking, cloudlet DC, and remote cloud services, to augment the performance and availability of the MCC services. However, the impact of dynamic changes in a mobile content (e.g., network status, bandwidth, latency, and location) for the task offloading model observes through proposing a mobility aware adaptive task offloading algorithm (MATOA), which makes a task offloading decision at runtime on selecting optimal wireless network channels and suitable resources for offloading. In this paper, we are formulating the decision problem, and it is well-known as an NP-hard problem. Nonetheless, MATOA has the following phases for the entire Mob-Cloud model: (i) adaptive offloading decision based on real-time information, (ii) workflow task scheduling phase, (iii) mobility model phase to motivate end-user invoke cloud services seamlessly while roaming, and (iv) faulttolerant phase to deal with failure (either network or node). We carry out actual real-life experiments at the implemented instruments to evaluate the overall performance of the MATOA algorithm. Evaluation results prove that MATOA adopts dynamic changes on offloading decision during run-time, and meet an enormous reduction in the total response time with the improved service availability whilst in comparison with the baseline task offloading strategies.\",\"PeriodicalId\":299985,\"journal\":{\"name\":\"EAI Endorsed Trans. Mob. Commun. Appl.\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Trans. Mob. Commun. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.3-9-2019.159947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Mob. Commun. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.3-9-2019.159947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mobility and Fault Aware Adaptive Task Offloading in Heterogeneous Mobile Cloud Environments
Nowadays, Mobile Cloud Computing (MCC) has become a predominant prototype for fetching the benefits of cloud computing to mobile devices’ propinquity. Service availability in addition to performance enhancement and mobility features is a preliminary goal in MCC. This paper proposes a mobility aware adaptive offloading framework, known as Mob-Cloud, which includes a mobile device as a thick client, ad-hoc networking, cloudlet DC, and remote cloud services, to augment the performance and availability of the MCC services. However, the impact of dynamic changes in a mobile content (e.g., network status, bandwidth, latency, and location) for the task offloading model observes through proposing a mobility aware adaptive task offloading algorithm (MATOA), which makes a task offloading decision at runtime on selecting optimal wireless network channels and suitable resources for offloading. In this paper, we are formulating the decision problem, and it is well-known as an NP-hard problem. Nonetheless, MATOA has the following phases for the entire Mob-Cloud model: (i) adaptive offloading decision based on real-time information, (ii) workflow task scheduling phase, (iii) mobility model phase to motivate end-user invoke cloud services seamlessly while roaming, and (iv) faulttolerant phase to deal with failure (either network or node). We carry out actual real-life experiments at the implemented instruments to evaluate the overall performance of the MATOA algorithm. Evaluation results prove that MATOA adopts dynamic changes on offloading decision during run-time, and meet an enormous reduction in the total response time with the improved service availability whilst in comparison with the baseline task offloading strategies.